, Volume 13, Issue 3, pp 367–381 | Cite as

Segmentation of the Cerebellar Peduncles Using a Random Forest Classifier and a Multi-object Geometric Deformable Model: Application to Spinocerebellar Ataxia Type 6

  • Chuyang YeEmail author
  • Zhen Yang
  • Sarah H. Ying
  • Jerry L. Prince
Original Article


The cerebellar peduncles, comprising the superior cerebellar peduncles (SCPs), the middle cerebellar peduncle (MCP), and the inferior cerebellar peduncles (ICPs), are white matter tracts that connect the cerebellum to other parts of the central nervous system. Methods for automatic segmentation and quantification of the cerebellar peduncles are needed for objectively and efficiently studying their structure and function. Diffusion tensor imaging (DTI) provides key information to support this goal, but it remains challenging because the tensors change dramatically in the decussation of the SCPs (dSCP), the region where the SCPs cross. This paper presents an automatic method for segmenting the cerebellar peduncles, including the dSCP. The method uses volumetric segmentation concepts based on extracted DTI features. The dSCP and noncrossing portions of the peduncles are modeled as separate objects, and are initially classified using a random forest classifier together with the DTI features. To obtain geometrically correct results, a multi-object geometric deformable model is used to refine the random forest classification. The method was evaluated using a leave-one-out cross-validation on five control subjects and four patients with spinocerebellar ataxia type 6 (SCA6). It was then used to evaluate group differences in the peduncles in a population of 32 controls and 11 SCA6 patients. In the SCA6 group, we have observed significant decreases in the volumes of the dSCP and the ICPs and significant increases in the mean diffusivity in the noncrossing SCPs, the MCP, and the ICPs. These results are consistent with a degeneration of the cerebellar peduncles in SCA6 patients.


Cerebellar peduncles Random forest classifier Multi-object geometric deformable model Spinocerebellar ataxia type 6 



This work is supported by NIH/NINDS 5R01NS056307-08 and the China Scholarship Council.


  1. Asman, A.J., & Landman, B.A. (2012). Formulating spatially varying performance in the statistical fusion framework. IEEE Transactions on Medical Imaging, 31(6), 1326–1336.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Avants, B.B., Epstein, C.L., Grossman, M., & Gee, J.C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Awate, S.P., Hui, Z., & Gee, J.C. (2007). A fuzzy, nonparametric segmentation framework for DTI and MRI analysis: with applications to DTI-tract extraction. IEEE Transactions on Medical Imaging, 26(11), 1525–1536.PubMedCrossRefGoogle Scholar
  4. Bazin, P.L., Ye, C., Bogovic, J.A., Shiee, N., Reich, D.S., Prince, J.L., & Pham, D.L. (2011). Direct segmentation of the major white matter tracts in diffusion tensor images. NeuroImage, 58(2), 458–468. doi: 10.1016/j.neuroimage.2011.06.020.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Behrens, T.E.J., Berg, H.J., Jbabdi, S., Rushworth, M.F.S., & Woolrich, M.W. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34(1), 144–155.PubMedCrossRefGoogle Scholar
  6. Bogovic, J.A., Prince, J.L., & Bazin, P.L. (2013). A multiple object geometric deformable model for image segmentation. Computer Vision and Image Understanding, 117(2), 145–157. doi: 10.1016/j.cviu.2012.10.006.PubMedCentralPubMedGoogle Scholar
  7. Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.CrossRefGoogle Scholar
  8. Breiman, L., Friedman, J., Stone C.J., & Olshen, R.A. (1984). Classification and regression trees. Boca Raton: CRC Press.Google Scholar
  9. Buijink, A. W., Caan, M. W., Contarino, M. F., Schuurman, P. R., van den Munckhof, P., de Bie, R. M., Olabarriaga S. D., Speelman, J. D., & van Rootselaar A. F. (2014). Structural changes in cerebellar outflow tracts after thalamotomy in essential tremor. Parkinsonism & Related Disorders, 20(5), 554–557. doi: 10.1016/j.parkreldis.2014.02.020.
  10. Caselles, V., Kimmel, R., & Sapiro, G. (1997). Geodesic active contours. International Journal of Computer Vision, 22(1), 61–79.CrossRefGoogle Scholar
  11. Cavallari, M., Moscufo, N., Skudlarski, P., Meier, D., Panzer, V.P., Pearlson, G.D., White, W.B., Wolfson, L., & Guttmann, C.R. (2013). Mobility impairment is associated with reduced microstructural integrity of the inferior and superior cerebellar peduncles in elderly with no clinical signs of cerebellar dysfunction. NeuroImage: Clinical, 2(0), 332–340.CrossRefGoogle Scholar
  12. Clemm von Hohenberg, C., Schocke, M., Wigand, M., Nachbauer, W., Guttmann, C., Kubicki, M., Shenton, M., Boesch, S., & Egger, K. (2013). Radial diffusivity in the cerebellar peduncles correlates with clinical severity in Friedreich ataxia. Neurological Sciences, 34(8), 1459–1462. doi: 10.1007/s10072-013-1402-0.PubMedCrossRefGoogle Scholar
  13. Dice, L.R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297–302.CrossRefGoogle Scholar
  14. Fan, X., Thompson, M., Bogovic, J.A., Bazin, P.L., & Prince, J.L. (2010). A novel contrast for DTI visualization for thalamus delineation. In Proceedings of SPIE medical imaging (Vol. 7625).Google Scholar
  15. Friston, K.J., Holmes, A.P., Worsley, K.J., Poline, J.P., Frith, C.D., & Frackowiak, R.S. (1994). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 2(4), 189–210.CrossRefGoogle Scholar
  16. Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V.J., Meuli, R., & Thiran, J.P. (2007). Mapping human whole-brain structural networks with diffusion MRI. PloS One, 2(7), e597.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., & Witten, I.H. (2009). The WEKA data mining software: an update. ACM SIGKDD Explorations Newsletter, 11(1), 10–18.CrossRefGoogle Scholar
  18. Hanaie, R., Mohri, I., Kagitani-Shimono, K., Tachibana, M., Azuma, J. , Matsuzaki, J., Watanabe, Y., Fujita, N., & Taniike, M. (2013). Altered microstructural connectivity of the superior cerebellar peduncle is related to motor dysfunction in children with autistic spectrum disorders. The Cerebellum, 12(5), 645–656. doi: 10.1007/s12311-013-0475-x.PubMedCrossRefGoogle Scholar
  19. Hao, X., Zygmunt, K., Whitaker, R.T., & Fletcher, P.T. (2014). Improved segmentation of white matter tracts with adaptive riemannian metrics. Medical Image Analysis, 18(1), 161– 175.PubMedCentralPubMedCrossRefGoogle Scholar
  20. Hess, C.P., Mukherjee, P., Han, E.T., Xu, D., & Vigneron, D.B. (2006). Q-ball reconstruction of multimodal fiber orientations using the spherical harmonic basis. Magnetic Resonance in Medicine, 56(1), 104–117. doi: 10.1002/mrm.20931.PubMedCrossRefGoogle Scholar
  21. Hüttlova, J., Kikinis, Z., Kerkovsky, M., Bouix, S., Vu, M.A., Makris, N., Shenton, M., & Kasparek, T. (2014). Abnormalities in myelination of the superior cerebellar peduncle in patients with schizophrenia and deficits in movement sequencing. The Cerebellum, 1–10. doi: 10.1007/s12311-014-0550-y.
  22. Knutsson, H. (1985). Producing a continuous and distance preserving 5-D vector representation of 3-D orientation. In IEEE computer society workshop on computer architecture for pattern analysis and image database management (pp. 175–182). doi: 10.1109/ISBI.2010.5490203.
  23. Landman, B. A., Farrell, J. A. D., Patel, N. L., Mori, S., & Prince, J. L. (2007). DTI fiber tracking: the importance of adjusting DTI gradient tables for motion correction. CATNAP—a tool to simplify and accelerate DTI analysis. In Proc. org human brain mapping 13th annual meeting.Google Scholar
  24. Landman, B. A., Bogovic, J. A., Wan, H., ElShahaby, F. E. Z., Bazin, P. L., & Prince, J. L. (2012). Resolution of crossing fibers with constrained compressed sensing using diffusion tensor MRI. NeuroImage, 59(3), 2175–2186.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Lawes, I.N.C., Barrick, T.R., Murugam, V., Spierings, N., Evans, D.R., Song, M., & Clark, C.A. (2008). Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. NeuroImage, 39(1), 62–79.PubMedCrossRefGoogle Scholar
  26. Le Bihan, D., Mangin, J.F., Poupon, C., Clark, C.A., Pappata, S., Molko, N., & Chabriat, H. (2001). Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13(4), 534–546.PubMedCrossRefGoogle Scholar
  27. Lenglet, C., Rousson, M., & Deriche, R. (2006). DTI segmentation by statistical surface evolution. IEEE Transactions on Medical Imaging, 25(6), 685–700.PubMedCrossRefGoogle Scholar
  28. Lucas, B.C., Bogovic, J.A., Carass, A., Bazin, P.L., Prince, J.L., Pham, D.L., & Landman, B.A. (2010). The Java image science toolkit (JIST) for rapid prototyping and publishing of neuroimaging software. Neuroinformatics, 8(1), 5–17.PubMedCentralPubMedCrossRefGoogle Scholar
  29. Maddah, M., Mewes, A.U.J., Haker, S., Grimson, W.E.L., & Warfield, S.K. (2005). Automated atlas-based clustering of white matter fiber tracts from DTMRI. In Medical image computing and computer-assisted intervention–MICCAI 2005 (Vol. 3749, pp. 188–195).Google Scholar
  30. Maddah, M., Grimson, W.E.L., Warfield, S.K., & Wells, W.M. (2008). A unified framework for clustering and quantitative analysis of white matter fiber tracts. Medical Image Analysis, 12(2), 191–202. doi: 10.1016/ Scholar
  31. Malcolm, J.G., Michailovich, O., Bouix, S., Westin, C.F., Shenton, M.E., & Rathi, Y. (2010). A filtered approach to neural tractography using the Watson directional function. Medical Image Analysis, 14(1), 58–69.PubMedCentralPubMedCrossRefGoogle Scholar
  32. Michailovich, O., Rathi, Y., & Dolui, S. (2011). Spatially regularized compressed sensing for high angular resolution diffusion imaging. IEEE Transactions on Medical Imaging, 30(5), 1100– 1115.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Mori, S., Wakana, S., van Zijl, P.C.M., & Nagae-Poetscher, L.M. (2005). MRI Atlas of human white matter, 1st edn. Amsterdam: Elsevier Science.Google Scholar
  34. Murata, Y., Kawakami, H., Yamaguchi, S., Nishimura, M., Kohriyama, T., Ishizaki, F., Matsuyama, Z., Mimori, Y., & Nakamura, S. (1998). Characteristic magnetic resonance imaging findings in spinocerebellar ataxia 6. Archives of Neurology, 55(10), 1348.PubMedCrossRefGoogle Scholar
  35. Nicoletti, G., Fera, F., Condino, F., Auteri, W., Gallo, O., Pugliese, P., Arabia, G., Morgante, L., Barone, P., Zappia, M., & Quattrone, A. (2006). MR imaging of middle cerebellar peduncle width: differentiation of multiple system atrophy from Parkinson disease. Radiology, 239(3), 825–830.PubMedCrossRefGoogle Scholar
  36. Nolte, J. (2002). The human brain: an introduction to its functional anatomy. St. Louis: Mosby.Google Scholar
  37. O’Donnell, L.J., & Westin, C.F. (2007). Automatic tractography segmentation using a high-dimensional white matter atlas. IEEE Transactions on Medical Imaging, 26(11), 1562–1575.PubMedCrossRefGoogle Scholar
  38. O’Donnell, L. J., Kubicki, M., Shenton, M. E., Dreusicke, M. H., Grimson, W. E. L., & Westin, C. F. (2006). A method for clustering white matter fiber tracts. American Journal of Neuroradiology, 27(5), 1032–1036.
  39. Oishi, K., Mori, S., Donohue, P. K., Ernst, T., Anderson, L., Buchthal, S., Faria, A., Jiang, H., Li, X., Miller, M. I., van Zijl, P. C., & Chang, L. (2011). Multi-contrast human neonatal brain atlas: application to normal neonate development analysis. NeuroImage, 56(1), 8–20.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Ojemann, J.G., Partridge, S.C., Poliakov, A.V., Niazi, T.N., Shaw, D.W., Ishak, G.E., Lee, A., Browd, S.R., Geyer, J., & Ellenbogen, R.G. (2013). Diffusion tensor imaging of the superior cerebellar peduncle identifies patients with posterior fossa syndrome. Child’s Nervous System, 29(11), 2071–2077. doi: 10.1007/s00381-013-2205-6.PubMedCrossRefGoogle Scholar
  41. Peled, S., Friman, O., Jolesz, F., & Westin, C.F. (2006). Geometrically constrained two-tensor model for crossing tracts in DWI. Magnetic Resonance Imaging, 24(9), 1263–1270.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Perrini, P., Tiezzi, G., Castagna, M., & Vannozzi, R. (2012). Three-dimensional microsurgical anatomy of cerebellar peduncles. Neurosurgical Review, 1–11.Google Scholar
  43. Qazi, A.A., Radmanesh, A., O’Donnell, L., Kindlmann, G., Peled, S., Whalen, S., Westin, C.F., & Golby, A.J. (2009). Resolving crossings in the corticospinal tract by two-tensor streamline tractography: method and clinical assessment using fMRI. NeuroImage, 47, 98–106.CrossRefGoogle Scholar
  44. Ramirez-Manzanares, A., Rivera, M., Vemuri, B.C., Carney, P., & Mareci, T. (2007). Diffusion basis functions decomposition for estimating white matter intravoxel fiber geometry. IEEE Transactions on Medical Imaging, 26(8), 1091–1102.PubMedCrossRefGoogle Scholar
  45. Sinke, R.J., Ippel, E.F., Diepstraten, C.M., Beemer, F.A., Wokke, J.H., van Hilten, B.J., Knoers, N. V., van Amstel, H.K.P., & Kremer, H. (2001). Clinical and molecular correlations in spinocerebellar ataxia type 6: a study of 24 Dutch families. Archives of Neurology, 58(11), 1839.PubMedCrossRefGoogle Scholar
  46. Sivaswamy, L., Kumar, A., Rajan, D., Behen, M., Muzik, O., Chugani, D., & Chugani, H. (2010). A diffusion tensor imaging study of the cerebellar pathways in children with autism spectrum disorder. Journal of Child Neurology, 25(10), 1223–1231.PubMedCrossRefGoogle Scholar
  47. Suarez, R.O., Commowick, O., Prabhu, S.P., & Warfield, S.K. (2012). Automated delineation of white matter fiber tracts with a multiple region-of-interest approach. NeuroImage, 59(4), 3690–3700. doi: 10.1016/j.neuroimage.2011.11.043.PubMedCentralPubMedCrossRefGoogle Scholar
  48. Tournier, J.D., Calamante, F., & Connelly, A. (2007). Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage, 35(4), 1459–1472.PubMedCrossRefGoogle Scholar
  49. Tuch, D. S. (2004). Q-ball imaging. Magnetic Resonance in Medicine, 52(6), 1358–1372.  10.1002/mrm.20279.PubMedCrossRefGoogle Scholar
  50. Tuch, D.S., Reese, T.G., Wiegell, M.R., Makris, N., Belliveau, J.W., & Wedeen, V.J. (2002). High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity. Magnetic Resonance in Medicine, 48(4), 577–582. doi: 10.1002/mrm.10268.PubMedCrossRefGoogle Scholar
  51. Wang, Z., & Vemuri, B.C. (2005). DTI segmentation using an information theoretic tensor dissimilarity measure. IEEE Transactions on Medical Imaging, 24(10), 1267–1277.PubMedCrossRefGoogle Scholar
  52. Wang, F., Sun, Z., Du, X., Wang, X., Cong, Z., Zhang, H., Zhang, D., & Hong, N. (2003). A diffusion tensor imaging study of middle and superior cerebellar peduncle in male patients with schizophrenia. Neuroscience Letters, 348(3), 135–138.PubMedCrossRefGoogle Scholar
  53. Wang, X., Grimson, W.E.L., & Westin, C.F. (2011). Tractography segmentation using a hierarchical dirichlet processes mixture model. NeuroImage, 54(1), 290–302.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Wang, S., Fan, G.G., Xu, K., & Wang, C. (2014). Altered microstructural connectivity of the superior and middle cerebellar peduncles are related to motor dysfunction in children with diffuse periventricular leucomalacia born preterm: a DTI tractography study. European Journal of Radiology, 83(6), 997–1004. doi: 10.1016/j.ejrad.2014.03.010.PubMedCrossRefGoogle Scholar
  55. Warfield, S.K., Zou, K.H., & Wells, W.M. (2004). Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23(7), 903–921.PubMedCentralPubMedCrossRefGoogle Scholar
  56. Wedeen, V.J., Hagmann, P., Tseng, W.Y.I., Reese, T.G., & Weisskoff, R.M. (2005). Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging. Magnetic Resonance in Medicine, 54(6), 1377–1386. doi: 10.1002/mrm.20642.PubMedCrossRefGoogle Scholar
  57. Westin, C.F., Peled, S., Gudbjartsson, H., Kikinis, R., & Jolesz, F.A. (1997). Geometrical diffusion measures for MRI from tensor basis analysis. In Proceedings of ISMRM (Vol. 97, pp. 1742).Google Scholar
  58. Xu, C., Yezzi, A., & Prince, J.L. (2000). On the relationship between parametric and geometric active contours. In IEEE conference record of the thirty-fourth asilomar conference on signals, systems and computers, 2000 (Vol. 1, pp. 483–489).Google Scholar
  59. Ye, C., Bazin, P.L., Bogovic, J.A., Ying, S.H., & Prince, J.L. (2012). Labeling of the cerebellar peduncles using a supervised Gaussian classifier with volumetric tract segmentation. In Proceedings of SPIE medical imaging (Vol. 8314, p. 143).Google Scholar
  60. Ye, C., Bogovic, J.A., Ying, S.H., & Prince, J.L. (2013). Segmentation of the complete superior cerebellar peduncles using a multi-object geometric deformable model. In 2013 IEEE 10th International Symposium on Biomedical Imaging (ISBI) (pp. 49–52).Google Scholar
  61. Ying, S.H., Landman, B.A., Chowdhury, S., Sinofsky, A.H., Gambini, A., Mori, S., Zee, D.S., & Prince, J.L. (2009). Orthogonal diffusion-weighted MRI measures distinguish region-specific degeneration in cerebellar ataxia subtypes. Journal of Neurology, 256(11), 1939–1942.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Yushkevich, P.A., Zhang, H., Simon, T.J., & Gee, J.C. (2008). Structure-specific statistical mapping of white matter tracts. NeuroImage, 41(2), 448–461.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Zhang, H., Avants, B.B., Yushkevich, P.A., Woo, J.H., Wang, S., McCluskey, L.F., Elman, L.B., Melhem, E.R., & Gee, J.C. (2007). High-dimensional spatial normalization of diffusion tensor images improves the detection of white matter differences: an example study using amyotrophic lateral sclerosis. IEEE Transactions on Medical Imaging, 26(11), 1585–1597.PubMedCrossRefGoogle Scholar
  64. Zhang, S., Correia, S., & Laidlaw, D.H. (2008). Identifying white-matter fiber bundles in DTI data using an automated proximity-based fiber-clustering method. IEEE Transactions on Visualization and Computer Graphics, 14(5), 1044–1053. doi: 10.1109/TVCG.2008.52.PubMedCentralPubMedCrossRefGoogle Scholar
  65. Zhou, Q., Michailovich, O., & Rathi, Y. (2014). Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion. In SPIE medical imaging, international society for optics and photonics (pp. 903,425–903,425).Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Chuyang Ye
    • 1
    Email author
  • Zhen Yang
    • 1
  • Sarah H. Ying
    • 2
  • Jerry L. Prince
    • 1
  1. 1.Department of Electrical and Computer EngineeringJohns Hopkins UniversityBaltimoreUSA
  2. 2.Departments of Radiology, Neurology, and OphthalmologyJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations