, Volume 13, Issue 4, pp 391–402 | Cite as

Building a FP-CIT SPECT Brain Template Using a Posterization Approach

  • D. Salas-GonzalezEmail author
  • Juan M. Górriz
  • Javier Ramírez
  • Ignacio A. Illán
  • Pablo Padilla
  • Francisco J. Martínez-Murcia
  • Elmar W. Lang
Original Article


Spatial affine registration of brain images to a common template is usually performed as a preprocessing step in intersubject and intrasubject comparison studies, computer-aided diagnosis, region of interest selection and brain segmentation in tomography. Nevertheless, it is not straightforward to build a template of [123I]FP-CIT SPECT brain images because they exhibit very low intensity values outside the striatum. In this work, we present a procedure to automatically build a [123I]FP-CIT SPECT template in the standard Montreal Neurological Institute (MNI) space. The proposed methodology consists of a head voxel selection using the Otsu’s method, followed by a posterization of the source images to three different levels: background, head, and striatum. Analogously, we also design a posterized version of a brain image in the MNI space; subsequently, we perform a spatial affine registration of the posterized source images to this image. The intensity of the transformed images is normalized linearly, assuming that the histogram of the intensity values follows an alpha-stable distribution. Lastly, we build the [123I]FP-CIT SPECT template by means of the transformed and normalized images. The proposed methodology is a fully automatic procedure that has been shown to work accurately even when a high-resolution magnetic resonance image for each subject is not available.


FP-CIT SPECT brain images Spatial normalization Template Parkinson 



This work was partly supported by the MICINN of Spain under the TEC2012-34306 project and the Consejería de Innovación, Ciencia y Empresa (Junta de Andalucía, Spain) under the Excellence Projects P09-TIC-4530 and P11-TIC-7103. This work has also been supported by a Marie Curie Intra-European Fellowship from the 7th Framework Programme FP7-PEOPLE-2013-IEF (Project: 624453 ALPHA-BRAIN-IMAGING).

Conflict of interests

The authors declare that they have no conflict of interest.


  1. Aarts, E., Helmich, R.C., Janssen, M.J., Oyen, W.J., Bloem, B.R., Cools, R. (2012). Aberrant reward processing in Parkinson’s disease is associated with dopamine cell loss. NeuroImage, 59(4), 3339–3346.CrossRefPubMedGoogle Scholar
  2. Aubert-Broche, B., Evans, A., Collins, L. (2006). A new improved version of the realistic digital brain phantom. NeuroImage, 32(1), 138–145.CrossRefPubMedGoogle Scholar
  3. Benamer, H.T.S., Patterson, J., Grosset, D.G., Booij, J., De Bruin, K., Van Royen, E., Speelman, J.D., Horstink, M H.I.M., Sips, H J.W.A., Dierckx, R.A., Versijpt, J., Decoo, D., Van Der Linden, C., Hadley, D.M., Doder, M., Lees, A.J., Costa, D.C., Gacinovic, S., Oertel, W.H., Pogarell, O., Hoeffken, H., Joseph, K., Tatsch, K., Schwarz, J., Ries, V. (2000). Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging: The [123I]-FP-CIT study group. Movement Disorders, 15(3), 503–510.CrossRefPubMedGoogle Scholar
  4. Booij, J., Tissingh, G., Boer, G.J., Speelman, J.D., Stoof, J.C., Janssen, A.G.M., Wolters, E.C. (1997a). [123I]FP-CIT SPECT shows a pronounced decline of striatal dopamine transporter labelling in early and advanced Parkinson’s disease. Journal of Neurology Neurosurgery and Psychiatry, 62(2), 133–140.CrossRefGoogle Scholar
  5. Booij, J., Tissingh, G., Winogrodzka, A., Boer, G.J., Stoof, J.C., Wolters, E.C., Van Royen, E.A. (1997b). Practical benefit of [123I]FP-CIT SPECT in the demonstration of the dopaminergic deficit in Parkinson’s disease. European Journal of Nuclear Medicine, 24(1), 68–71.CrossRefPubMedGoogle Scholar
  6. Booij, J., Habraken, J.B.A., Bergmans, P., Tissingh, G., Winogrodzka, A., Wolters, E.C., Janssen, A.G.M., Stoof, J.C., Van Royen, E.A. (1998). Imaging of dopamine transporters with iodine-123-fp-cit spect in healthy controls and patients with parkinson’s disease. Journal of Nuclear Medicine, 39(11), 1879–1884.PubMedGoogle Scholar
  7. Brett, M., Christoff, K., Cusack, R., Lancaster, J. (2001). Using the Talairach atlas with the MNI template. Neuroimage, 13(6), S85.CrossRefGoogle Scholar
  8. Ciarmiello, A., Giovacchini, G., Guidotti, C., Meniconi, M., Lazzeri, P., Carabelli, E., Mansi, L., Mariani, G., Volterrani, D., Del Sette, M. (2013). Weighted registration of 123i-fp-cit spect images improves accuracy of binding potential estimates in pathologically low striatal uptake. Journal of Cellular Physiology, 228(10), 2086–2094.CrossRefPubMedGoogle Scholar
  9. Colloby, S.J., O’Brien, J.T., Fenwick, J.D., Firbank, M.J., Burn, D.J., McKeith, I.G., Williams, E.D. (2004). The application of statistical parametric mapping to 123I-FP-CIT SPECT in dementia with Lewy bodies, Alzheimer’s disease and Parkinson’s disease. NeuroImage, 23(3), 956–966.CrossRefPubMedGoogle Scholar
  10. Colloby, S.J., Firbank, M.J., Pakrasi, S., Lloyd, J.J., Driver, I., McKeith, I.G., Williams, E.D., O’Brien, J.T. (2008). A comparison of 99mtc-exametazime and 123I-FP-CIT SPECT imaging in the differential diagnosis of Alzheimer’s disease and dementia with Lewy bodies. International Psychogeriatrics, 20(6), 1124–1140.CrossRefPubMedGoogle Scholar
  11. Cuberas-Borrós, G., Lorenzo-Bosquet, C., Aguad-Bruix, S., Hernndez-Vara, J., Pifarr-Montaner, P., Miquel, F., lvarez Sabin, J., Castell-Conesa, J. (2011). Quantitative evaluation of striatal I-123-FP-CIT uptake in essential tremor and Parkinsonism. Clinical Nuclear Medicine, 36(11), 991–996.CrossRefPubMedGoogle Scholar
  12. Della Rosa, P.A., Cerami, C., Gallivanone, F., Prestia, A., Caroli, A., Castiglioni, I., Gilardi, M.C., Frisoni, G., Giovanni, Friston K., Ashburner, J., Perani, D. (2014). A standardized [18F]-FDG-PET template for spatial normalization in statistical parametric mapping of dementia. Neuroinformatics, 1–19.Google Scholar
  13. Fazio, L., Blasi, G., Taurisano, P., Papazacharias, A., Romano, R., Gelao, B., Ursini, G., Quarto, T., Lo Bianco, L., Di Giorgio, A., Mancini, M., Popolizio, T., Rubini, G., Bertolino, A. (2011). D2 receptor genotype and striatal dopamine signaling predict motor cortical activity and behavior in humans. NeuroImage, 54(4), 2915–2921.CrossRefPubMedGoogle Scholar
  14. Friston, K., Ashburner, J., Kiebel, S., Nichols, T., Penny, W. (Eds.) (2007). Statistical Parametric Mapping: The Analysis of Functional Brain Images: Academic Press.Google Scholar
  15. van de Giessen, E., Hesse, S., Caan, M., Zientek, F., Dickson, J., Tossici-Bolt, L., Sera, T., Asenbaum, S., Guignard, R., Akdemir, U., Knudsen, G., Nobili, F., Pagani, M., Vander Borght, T., Van Laere, K., Varrone, A., Tatsch, K., Booij, J., Sabri, O. (2013). No association between striatal dopamine transporter binding and body mass index: A multi-center european study in healthy volunteers. NeuroImage, 64(1), 61–67.CrossRefPubMedGoogle Scholar
  16. Gispert, J., Pascau, J., Reig, S., Martínez-Lázaro, R., Molina, V., García-Barreno, P., Desco, M. (2003). Influence of the normalization template on the outcome of statistical parametric mapping of {PET} scans. NeuroImage, 19(3), 601–612.CrossRefPubMedGoogle Scholar
  17. Hill, D., Batchelor, P., Holden, M., Hawkes, D. (2001). Medical image registration. Physics in Medicine and Biology, 46(3), R1–R45.CrossRefPubMedGoogle Scholar
  18. Holmes, C., Hoge, R., Collins, L., Woods, R., Toga, A., Evans, A. (1998). Enhancement of mr images using registration for signal averaging. Journal of Computer Assisted Tomography, 22(2), 324–333.CrossRefPubMedGoogle Scholar
  19. Illán, I.A., Górriz, J., Ramírez, J., Segovia, F., Jiménez-Hoyuela, J., Ortega Lozano, S. (2012). Automatic assistance to Parkinsons disease diagnosis in Datscan SPECT imaging. Medical Physics, 39(10), 5971–5980.CrossRefPubMedGoogle Scholar
  20. Kas, A., Payoux, P., Habert, M.O., Malek, Z., Cointepas, Y., El Fakhri, G., Chaumet-Riffaud, P., Itti, E., Remy, P. (2007). Validation of a standardized normalization template for statistical parametric mapping analysis of 123I-FP-CIT images. Journal of Nuclear Medicine, 48(9), 1459–67.CrossRefPubMedGoogle Scholar
  21. Koch, W., Radau, P., Hamann, C., Tatsch, K. (2005). Clinical testing of an optimized software solution for an automated, observer-independent evaluation of dopamine transporter spect studies. Journal of Nuclear Medicine, 46(7), 1109–1118.PubMedGoogle Scholar
  22. Marek, K., Innis, R., Van Dyck, C., Fussell, B., Early, M., Eberly, S., Oakes, D., Seibyl, J. (2001). [123I] β-CIT SPECT imaging assessment of the rate of Parkinson’s disease progression. Neurology, 57(11), 2089–2094.CrossRefPubMedGoogle Scholar
  23. Mazziotta, J., Toga, A., Evans, A., Fox, P., Lancaster, J., Zilles, K., Woods, R., Paus, T., Simpson, G., Pike, B., Holmes, C., Collins, L., Thompson, P., MacDonald, D., Iacoboni, M., Schormann, T., Amunts, K., Palomero-Gallagher, N., Geyer, S., Parsons, L., Narr, K., Kabani, N., Le Goualher, G., Boomsma, D., Cannon, T., Kawashima, R., Mazoyer, B. (2001). A probabilistic atlas and reference system for the human brain: International consortium for brain mapping (ICBM). Philosophical Transactions of the Royal Society B: Biological Sciences, 356(1412), 1293–1322.CrossRefGoogle Scholar
  24. Neumeyer, J.L., Wang, S., Milius, R.A., Baldwin, R.M., Zea-Ponce, Y., Hoffer, P.B., Sybirska, E., Al-Tikriti, M., Charney, D.S., Malison, R.T., Laruelle, M., Innis, R.B. (1991). [123I]-2 β-carbomethoxy-3 β-(4-iodophenyl)tropane: High-affinity SPECT radiotracer of monoamine reuptake sites in brain. Journal of Medicinal Chemistry, 34(10), 3144–3146.CrossRefPubMedGoogle Scholar
  25. Nolan, J.P. (1997). Numerical calculation of stable densities and distribution functions. Commun Statist-Stochastic Models, 13(4), 759–774.CrossRefGoogle Scholar
  26. Nolan, J.P. (2001). Lévy processes: Theory and Applications. Boston: Birkhauser. chap Maximum likelihood estimation of stable parameters.Google Scholar
  27. O’Brien, J.T., McKeith, I.G., Walker, Z., Tatsch, K., Booij, J., Darcourt, J., Marquardt, M., Reininger, C. (2009). Diagnostic accuracy of 123I-FP-CIT SPECT in possible dementia with Lewy bodies. British Journal of Psychiatry, 194(1), 34–39.CrossRefPubMedGoogle Scholar
  28. Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9(1), 62–66.CrossRefGoogle Scholar
  29. Salas-Gonzalez, D., Górriz, J.M., Ramírez, J., Lassl, A., Puntonet, C.G. (2008). Improved gauss-newton optimization methods in affine registration of spect brain images. IET Electronics Letters, 44(22), 1291–1292.CrossRefGoogle Scholar
  30. Salas-Gonzalez, D., Górriz, J., Ramírez, J., Illán, I., Lang, E.W. (2013a). Linear intensity normalization of FP-CIT SPECT brain images using the α-stable distribution. NeuroImage, 65, 449–455.CrossRefPubMedGoogle Scholar
  31. Salas-Gonzalez, D., Górriz, J.M., Ramírez, J., Padilla, P., Illán, I.A. (2013b). Improving the convergence rate in affine registration of PET and SPECT brain images using histogram equalization. Computational and Mathematical Methods in Medicine 2013(Article ID 760903):8 pages.Google Scholar
  32. Samorodnitsky, G., & Taqqu, M. (1994). Stable non-Gaussian random processes: stochastic models with infinite variance. Stochastic Modeling. London: Chapman & Hall.Google Scholar
  33. Seibyl, J.P., Marchek, K.L., Quinlan, D., Sheff, K., Zoghbi, S., Zea-Ponce, Y., Baldwin, R.M., Fussell, B., Smith, E.O., Charney, D.S., Hoffer, P.B., Innis, R.B., van Dyck, C.H. (1995). Decreased single-photon emission computed tomographic [123I] β-CIT striatal uptake correlates with symptom severity in Parkinson’s disease. Annals of Neurology, 38(4), 589–598.CrossRefPubMedGoogle Scholar
  34. Walker, Z., Jaros, E., Walker, R.W., Lee, L., Costa, D.C., Livingston, G., Ince, P.G., Perry, R., McKeith, I., Katona, C.L.E. (2007). Dementia with Lewy bodies: A comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. Journal of Neurology, Neurosurgery and Psychiatry, 78(11), 1176–1181.PubMedCentralCrossRefPubMedGoogle Scholar
  35. Winogrodzka, A., Bergmans, P., Booij, J., Van Royen, E.A., Stoof, J.C., Wolters, E.C. (2003). [123I]FP-CIT SPECT is a useful method to monitor the rate of dopaminergic degeneration in early-stage Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 74, 294–298.PubMedCentralCrossRefPubMedGoogle Scholar
  36. Zitová, B., & Flusser, J. (2003). Image registration methods: A survey. Image and Vision Computing, 21 (11), 977–1000.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • D. Salas-Gonzalez
    • 1
    Email author
  • Juan M. Górriz
    • 2
  • Javier Ramírez
    • 2
  • Ignacio A. Illán
    • 2
  • Pablo Padilla
    • 2
  • Francisco J. Martínez-Murcia
    • 2
  • Elmar W. Lang
    • 1
  1. 1.Computational Intelligence and Machine Learning GroupUniversity of RegensburgRegensburgGermany
  2. 2.Department of Signal Theory, Networking and CommunicationsUniversity of GranadaGranadaSpain

Personalised recommendations