Advertisement

Neuroinformatics

, Volume 13, Issue 2, pp 227–244 | Cite as

Improved Automatic Centerline Tracing for Dendritic and Axonal Structures

  • David Jiménez
  • Demetrio Labate
  • Ioannis A. Kakadiaris
  • Manos PapadakisEmail author
Original Article

Abstract

Centerline tracing in dendritic structures acquired from confocal images of neurons is an essential tool for the construction of geometrical representations of a neuronal network from its coarse scale up to its fine scale structures. In this paper, we propose an algorithm for centerline extraction that is both highly accurate and computationally efficient. The main novelties of the proposed method are (1) the use of a small set of Multiscale Isotropic Laplacian filters, acting as self-steerable filters, for a quick and efficient binary segmentation of dendritic arbors and axons; (2) an automated centerline seed points detection method based on the application of a simple 3D finite-length filter. The performance of this algorithm, which is validated on data from the DIADEM set appears to be very competitive when compared with other state-of-the-art algorithms.

Keywords

Image processing Automated neuron tracing Neuron image segmentation 

Notes

Acknowledgments

This work was supported in part by NSF-DMS 1320910, 0915242, 1008900, 1005799 and by NHARP-003652-0136-2009. I.A. Kakadiaris was also supported by the Hugh Roy and Lillie Cranz Cullen Endowment Fund. We thank our student P. Hernandez-Herrera for allowing us to use the performance test results he obtained with Neuronstudio, ORION and APP2 on numerous data sets. Last, but most certainly not least, we would like to thank the three reviewers for their encouraging comments and their valuable input which helped us improve the quality of the paper.

Supplementary material

12021_2014_9256_MOESM1_ESM.pdf (1.8 mb)
(PDF 1.84 MB)

References

  1. 3D-Slicer (2008). http://www.slicer.org/.
  2. Al-Kofahi, K., Lasek, S., Szarowski, D., Pace, C., Nagy, G. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Trans Information Technology in Biomedicine, 6(2), 171–187.CrossRefGoogle Scholar
  3. Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects. Neuroinformatics, 9(2-3), 181–191.CrossRefPubMedGoogle Scholar
  4. Bodmann, B., Hoffman, D., Kouri, D., Papadakis, M. (2007). Hermite distributed approximating functionals as almost-ideal low-pass filters. Sampling Theory in Image and Signal Processing, 7, 15–38.Google Scholar
  5. Breitenreicher, D., Sofka, M., Britzen, S., Zhou, S. (2013). Hierarchical discriminative framework for detecting tubular structures in 3d images In Gee, J. (Ed.), Proc. Information Processing in Medical Imaging. Lecture Notes in computer Science (Vol. 7917, pp. 328–339). Berlin Heidelberg: Springer-Verlag.Google Scholar
  6. Brown, K., Barrionuevo, G., Canty, A., Paola, V., Hirsch, J., Jefferis, G., Lu, J., Snippe, M., Sugihara, I, Ascoli, G. (2011). The DIADEM data sets: representative light microscopy images of neuronal morphology to advance automation of digital reconstructions (Vol. 9, pp. 143–157).Google Scholar
  7. Chandler, C., & Gibson, A.G. (1999). Uniform approximation of functions with discrete approximation functionals. J Approx Th, 100, 233–250.CrossRefGoogle Scholar
  8. Chothani, P., Mehta, V., Stepanyantas, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics, 9(2-3), 263–278.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273–297.Google Scholar
  10. Dijkstra, E. (1959). A note on two problems in connection with graphs. Numerische Mathematic, 1, 269–271.CrossRefGoogle Scholar
  11. Donohue, D., & Ascoli, G. (2010). Automated reconstruction of neuronal morphology: an Overview. Brain Research Reviews.Google Scholar
  12. Easley, G., Labate, D., Lim, W.Q. (2008). Sparse directional image representations using the discrete shearlet transform. Applied and Computational Harmonic Analysis, 25(1), 25–46.CrossRefGoogle Scholar
  13. Frangi, A., Niessen, W., Vincken, K., Viergever, M. (1998). Multiscale vessel enhancement filtering. In: Proceedings Medical Image Computing and Computer Assisted Intervention, (Vol. 1496. Cambridge, MA, pp. 130–137).Google Scholar
  14. Hassouna, M., & Farag, A. (2005). Robust centerline extraction framework using level sets. In: IEEE Proceedings Conference on Computer Vision and Pattern Recognition, (Vol. 1, pp. 458–465).Google Scholar
  15. Hines, M., & Carnevale, N. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–135.CrossRefPubMedGoogle Scholar
  16. Hoffman, D.K., & Nayar, N. (1991). Analytic banded approximation for the discretized free propagator. Journal of Physical Chemistry, 95, 8299–8305.CrossRefGoogle Scholar
  17. Hoffman, D.K., Frishman, A.M., Kouri, D.J. (1996). Distributed approximating functional approach to fitting multi-dimensional surfaces. Chemical Physics Letters, 262, 393–399.CrossRefGoogle Scholar
  18. Hoffman, D.K., Kouri, D.J., Pollak, E. (2002). Reducing gaussian noise using distributed approximating functionals. Computer Physics Communications, 147, 759–769.CrossRefGoogle Scholar
  19. Jiménez, D., Papadakis, M., Labate, D., Kakadiaris, I.A. (2013). Improved automatic centerline tracing for dendritic structures. In: Biomedical Imaging (ISBI), 2013 IEEE 10th International Symposium on. IEEE, (pp. 1050–1053).Google Scholar
  20. Jimenez, D., & Labate, D. (2014). Papadakis M A directional representation for 3D tubular structures resulting from isotropic well-localized atoms under review.Google Scholar
  21. Kakadiaris, I., & Colbert, C. (2007). Orion: Automated reconstruction of neuronal morphologies from image stacks. In: Proceedings 24th Annual Houston Conference on Biomedical Engineering Research, Houston, (p. 275).Google Scholar
  22. Koh, Y. (2001). Automated recognition algorithms for neural studies. PhD thesis, State University of New York at Stony Brook.Google Scholar
  23. Krissian, K., Malandain, G., Ayache, N., Vaillant, R., Trousset, Y. (2000). Model based detection of tubular structures in 3d images. Computer Vision and Image Understanding, 80(2), 130–171.CrossRefGoogle Scholar
  24. Luisi, J., Narayanaswamy, A., Galbreath, Z., Roysam, B. (2011). The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics, 9(2-3), 305–315.CrossRefPubMedGoogle Scholar
  25. Meijering, E. (2010). Neuron tracing in perspective. Cytometry Part A, 77A(7), 693–704. doi: 10.1002/cyto.a.20895.CrossRefGoogle Scholar
  26. Morrison, P., & Zou, J. (2006). Skeletonization based on error reduction. Pattern Recognition, 39(6), 1099–1109.CrossRefGoogle Scholar
  27. Negi, P., & Labate, D. (2012). 3D discrete shearlet transform and video processing. IEEE Transactions Image Process, 21(6), 2944–2954. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6129426.
  28. Neurolucida (2013). MBF Bioscience: stereology and neuron morphology quantitative analysis. URL http://www.mbfbioscience.com.
  29. Ozcan, B., Labate, D., Jiménez, D., Papadakis, M. (2013). Proceedings Wavelets and Sparsity XV. In: D Van De Ville MP V Goyal (Ed.), Vol. 8858. SPIE, San Diego.Google Scholar
  30. Peng, H., Long, F., Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Rodriguez, A., Ehlenberger, D., Hof, P., Wearne, S. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175. doi: 10.1016/j.jneumeth.2009.07.021.CrossRefPubMedCentralPubMedGoogle Scholar
  32. Santamaria-Pang, A., Colbert, C., Losavio, B., Saggau, P., Kakadiaris, I. (2007). Automatic morphological reconstruction of neurons from optical images. In: Proceedings International Workshop in Microscopic Image Analysis and Applications in Biology. Piscataway, NJ.Google Scholar
  33. Santamaria-Pang, A., Hernandez-Herrera, P., M PPS, Kakadiaris, I.A. (2014). Automatic morphological reconstruction of neurons from multiphoton and confocal microscopy images. Neuroinformatics.Google Scholar
  34. Sato, Y., Nakajima, S., Atsumi, H., Koller, T., Gerig, G., Yoshida, S., Kikinis, R. (1998). 3-D multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2(2), 143–168.CrossRefPubMedGoogle Scholar
  35. Sato, Y., Westin, C., Bhalerao, A., Nakajima, S., Shiraga, N., Tamura, S., Kikinis, R. (2000). Tissue classification based on 3d local intensity structures for volume rendering. IEEE Transactions on Visualization and Computer Graphics, 6(2), 160–180.CrossRefGoogle Scholar
  36. Scorcioni, R.A.G., & Polavaram, S. (2008). L-measure: a web-accessible tool for the analysis,comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876. doi: 10.1038/nprot.2008.51.CrossRefPubMedCentralPubMedGoogle Scholar
  37. Turetken, E., Gonzalez, G., Blum, C., Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2-3), 279–302.CrossRefPubMedGoogle Scholar
  38. Turetken, E., Benmansour, F., Fua, P. (2012). Automated reconstruction of tree structures using path classifiers and mixed integer programming. In: Proceedings Computer Vision and Pattern Recognition (CVPR), IEEE Conference on. IEEE, Rhode Island, (pp. 566–573).Google Scholar
  39. Turetken, E., Benmansour, F., Andres, B., H P, Fua, P. (2013). Reconstructing loopy curvilinear structures using integer programming. In: Proceedings CVPR. IEEE, Portland, (pp. 1822–1829).Google Scholar
  40. Wang, Y., Narayanaswamy, A., Tsai, C.L., Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics, 9(2-3), 193–217.CrossRefPubMedGoogle Scholar
  41. Wearne, S., Rodriguez, A., Ehlenberger, D., Rocher, A., Henderson, S., Hof, P. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680. doi: 10.1016/j.neuroscience.2005.05.053.CrossRefPubMedGoogle Scholar
  42. Xiao, H., & Peng, H. (2013). APP2: automatic tracing of 3D neuron morphology based on hierarchical pruning of a gray-weighted image distance-tree. Bioinformatics, 29(11), 1448–1454.CrossRefPubMedCentralPubMedGoogle Scholar
  43. Xie, J., Zhao, T., Lee, T., Myers, E., Peng, H. (2010). Automatic neuron tracing in volumetric microscopy images with anisotropic path searching. In: Proceedings Medical Image Computing and Computer-Assisted Intervention (pp. 472–479). Beijing: SpringerGoogle Scholar
  44. Xie, J., Zhao, T., Lee, T., Myersm, E., Peng, H. (2011). Anisotropic path searching for automatic neuron reconstruction. Medical image analysis, 15(5), 680–689.CrossRefPubMedGoogle Scholar
  45. Xiong, G., Zhou, X., Degterev, A., Ji, L., Wong, S. (2006). Automated neurite labeling and analysis in fluorecence microscopy images. Journal of the International Society for Analytical Cytology, 69A, 494–505. doi: 10.1002/cyto.a.20296/pdf, http://onlinelibrary.wiley.com.ezproxy.lib.uh.edu.
  46. Yuan, X., Trachtenberg, J., Potter, S., Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7(4), 213–232.CrossRefPubMedCentralPubMedGoogle Scholar
  47. Zhao, T., Xie, J., Amat, F., Clack, F., Ahammad, P., Peng, H., Long, F., Myers, E. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, 9(2-3), 247–261.CrossRefPubMedCentralPubMedGoogle Scholar
  48. Zhou, Y., & Toga, A. (1999). Efficient skeletonization of volumetric objects. IEEE Trans Visual and Computer Graphics, 5(3), 196–209.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David Jiménez
    • 1
  • Demetrio Labate
    • 2
  • Ioannis A. Kakadiaris
    • 3
  • Manos Papadakis
    • 2
    Email author
  1. 1.Department of MathematicsUniversity of Costa RicaSan Pedro Montes de OcaRepublic of Costa Rica
  2. 2.Department of MathematicsUniversity of HoustonHoustonUSA
  3. 3.Computational Biomedicine Lab, Department of Computer ScienceUniversity of HoustonHoustonUSA

Personalised recommendations