Neuroinformatics

, Volume 13, Issue 2, pp 133–150 | Cite as

Automated Methods for Hippocampus Segmentation: the Evolution and a Review of the State of the Art

Review

Abstract

The segmentation of the hippocampus in Magnetic Resonance Imaging (MRI) has been an important procedure to diagnose and monitor several clinical situations. The precise delineation of the borders of this brain structure makes it possible to obtain a measure of the volume and estimate its shape, which can be used to diagnose some diseases, such as Alzheimer’s disease, schizophrenia and epilepsy. As the manual segmentation procedure in three-dimensional images is highly time consuming and the reproducibility is low, automated methods introduce substantial gains. On the other hand, the implementation of those methods is a challenge because of the low contrast of this structure in relation to the neighboring areas of the brain. Within this context, this research presents a review of the evolution of automatized methods for the segmentation of the hippocampus in MRI. Many proposed methods for segmentation of the hippocampus have been published in leading journals in the medical image processing area. This paper describes these methods presenting the techniques used and quantitatively comparing the methods based on Dice Similarity Coefficient. Finally, we present an evaluation of those methods considering the degree of user intervention, computational cost, segmentation accuracy and feasibility of application in a clinical routine.

Keywords

Hippocampus segmentation Magnetic resonance imaging Neuroimaging Segmentation methods Medical images Evaluation of segmentation Alzheimer’s disease 

References

  1. Achterberg, H. C., Poot, D. H., van der Lijn, F., Vernooij, M. W., Ikram, M. A., Niessen, W. J., & de Bruijne, M. (2013). Local appearance features for robust MRI brain structure segmentation across scanning protocols. In: S. Ourselin, & D. R. Haynor (Ed.), Medical Imaging 2013: Image Processing. SPIE. doi:10.1117/12.2006038.
  2. Akhondi-Asl, A., Jafari-Khouzani, K., Elisevich, K., & Soltanian-Zadeh, H. (2011). Hippocampal volumetry for lateralization of temporal lobe epilepsy: automated versus manual methods. NeuroImage, 54, S218–S226. doi:10.1016/j.neuroimage.2010.03.066.CrossRefPubMedGoogle Scholar
  3. Akselrod-Ballin, A., Galun, M., Gomori, J. M., Brandt, A., & Basri, R. (2007). Prior knowledge driven multiscale segmentation of brain MRI. In: Lecture Notes in Computer Science (pp. 118–126). Springer Science + Business Media. doi:10.1007/978-3-540-75759-7_15.
  4. Aljabar, P., Heckemann, R., Hammers, A., Hajnal, J., & Rueckert, D. (2009). Multi-atlas based segmentation of brain images: atlas selection and its effect on accuracy. NeuroImage, 46(3), 726–738. doi:10.1016/j.neuroimage.2009.02.018.CrossRefPubMedGoogle Scholar
  5. Artaechevarria, X., Munoz-Barrutia, A., & de Solorzano, C. O. (2009). Combination strategies in multi-atlas image segmentation: application to brain MR data. IEEE Transactions on Medical Imaging, 28(8), 1266–1277. doi:10.1109/tmi.2009.2014372.CrossRefPubMedGoogle Scholar
  6. Ashton, E., Parker, K., Berg, M., & Chen, C. W. (1997). A novel volumetric feature extraction technique with applications to MR images. IEEE Transactions on Medical Imaging, 16(4), 365–371. doi:10.1109/42.611343.CrossRefPubMedGoogle Scholar
  7. Ashton, E. A., Riek, J. K., Molinelli, L., Berg, M. J., & Parker, K. J. (2003). A method for fully automated measurement of neurological structures in MRI. In: M. Sonka, & J. M. Fitzpatrick (Ed.), Medical Imaging 2003: Image Processing. SPIE. doi:10.1117/12.481390.
  8. Asman, A. J., & Landman, B. A. (2011). Robust statistical label fusion through Consensus Level, Labeler Accuracy, and Truth Estimation (COLLATE). IEEE Transactions on Medical Imaging, 30(10), 1779–1794. doi:10.1109/tmi.2011.2147795.CrossRefPubMedCentralPubMedGoogle Scholar
  9. Atho, F. E., Traina, A. J., Traina, C., & Diniz, P. R. (2011). The similarity cloud model: a novel and efficient hippocampus segmentation technique. 2011 24th International Symposium on Computer-Based Medical Systems (CBMS). IEEE. doi:10.1109/cbms.2011.5999148.
  10. Barnes, J., Boyes, R., Lewis, E., Schott, J., Frost, C., Scahill, R., & Fox, N. (2007). Automatic calculation of hippocampal atrophy rates using a hippocampal template and the boundary shift integral. Neurobiology of Aging, 28(11), 1657–1663. doi:10.1016/j.neurobiolaging.2006.07.008.CrossRefPubMedGoogle Scholar
  11. Barnes, J., Foster, J., Boyes, R., Pepple, T., Moore, E., Schott, J., & Fox, N. (2008). A comparison of methods for the automated calculation of volumes and atrophy rates in the hippocampus. NeuroImage, 40(4), 1655–1671. doi:10.1016/j.neuroimage.2008.01.012.
  12. Beg, M. F., Miller, M. I., Trouvé, A., & Younes, L. (2005). Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International Journal of Computer Vision, 61(2), 139–157. doi:10.1023/b:visi.0000043755.93987.aa.CrossRefGoogle Scholar
  13. Bishop, C. A., Jenkinson, M., Andersson, J., Declerck, J., & Merhof, D. (2011). Novel Fast Marching for Automated Segmentation of the Hippocampus (FMASH): method and validation on clinical data. NeuroImage, 55(3), 1009–1019. doi:10.1016/j.neuroimage.2010.12.071.CrossRefPubMedGoogle Scholar
  14. Blumberg, H. P., Kaufman, J., Martin, A., Whiteman, R., Zhang, J. H., Gore, J. C., & Peterson, B. S. (2003). Amygdala and hippocampal volumes in adolescents and adults with bipolar disorder. Arch Gen Psychiatry, 60(12), 1201. doi:10.1001/archpsyc.60.12.1201.
  15. Bobinski, M. (1996). Neurofibrillary pathology—correlation with hippocampal formation atrophy in Alzheimer disease. Neurobiology of Aging, 17(6), 909–919. doi:10.1016/s0197-4580(96)00160-1.PubMedGoogle Scholar
  16. Boccardi, M., Ganzola, R., Duchesne, S., Redolfi, A., Bartzokis, G., Csernansky, J., & Frisoni, G. B. (2010). Survey of segmentation protocols for manual hippocampal volumetry: Preparatory phase for an EADC-ADNI harmonization protocol. Alzheimer’s & Dementia, 6(4), S58–S59. doi:10.1016/j.jalz.2010.05.164.
  17. Bremner, J. D., Randall, P., Vermetten, E., Staib, L., Bronen, R. A., Mazure, C., & Charney, D. S. (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biological Psychiatry, 41(1), 23–32. doi:10.1016/s0006-3223(96)00162-x.
  18. Bremner, J. D., Narayan, M., Anderson, E. R., Staib, L. H., Miller, H. L., & Charney, D. S. (2000). Hippocampal volume reduction in major depression. American Journal of Psychiatry, 157(1), 115–118.CrossRefPubMedGoogle Scholar
  19. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., & Cuadra, M. B. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 104(3), e158–e177. doi:10.1016/j.cmpb.2011.07.015.CrossRefPubMedGoogle Scholar
  20. Cardoso, M. J., Leung, K., Modat, M., Keihaninejad, S., Cash, D., Barnes, J., & Ourselin, S. (2013). STEPS: Similarity and Truth Estimation for Propagated Segmentations and its application to hippocampal segmentation and brain parcelation. Medical Image Analysis, 17(6), 671–684. doi:10.1016/j.media.2013.02.006.
  21. Carmichael, O. T., Aizenstein, H. A., Davis, S. W., Becker, J. T., Thompson, P. M., Meltzer, C. C., & Liu, Y. (2005). Atlas-based hippocampus segmentation in Alzheimer’s disease and mild cognitive impairment. NeuroImage, 27(4), 979–990. http://www.sciencedirect.com/science/article/pii/S1053811905003162.CrossRefPubMedCentralPubMedGoogle Scholar
  22. Cendes, F. (2005). Progressive hippocampal and extrahippocampal atrophy in drug resistant epilepsy: review. Current Opinion in Neurology, 18(2), 173–177. doi:10.1097/01.wco.0000162860.49842.90.CrossRefPubMedGoogle Scholar
  23. Cendes, F., Andermann, F., Gloor, P., Evans, A., Jones-Gotman, M., Watson, C., & Leroux, G. (1993). MRI volumetric measurement of amygdala and hippocampus in temporal lobe epilepsy. Neurology, 43(4), 719–719. doi:10.1212/wnl.43.4.719.
  24. Chen, M., Kanade, T., Pomerleau, D., & Schneider, J. (1999). 3-D deformable registration of medical images using a statistical Atlas. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI’99 (pp. 621–630). Springer Science + Business Media. doi:10.1007/10704282_67.
  25. Chen, W., Li, S., Jia, F., & Zhang, X. (2011). Segmentation of hippocampus based on ROI atlas registration. 2011 I.E. International Symposium on IT in Medicine and Education. IEEE. doi:10.1109/itime.2011.6130821.
  26. Christensen, G., Joshi, S., & Miller, M. (1997). Volumetric transformation of brain anatomy. IEEE Transactions on Medical Imaging, 16(6), 864–877. doi:10.1109/42.650882.CrossRefPubMedGoogle Scholar
  27. Chupin, M., Mukuna-Bantumbakulu, A. R., Hasboun, D., Bardinet, E., Baillet, S., Kinkingnéhun, S., & Garnero, L. (2007). Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: method and validation on controls and patients with Alzheimer’s disease. NeuroImage, 34(3), 996–1019. doi:10.1016/j.neuroimage.2006.10.035.
  28. Chupin, M., Chetelat, G., Lemieux, L., Dubois, B., Garnero, L., Benali, H., & Colliots, O. (2008). Fully automatic hippocampus segmentation discriminates between early Alzheimer’s disease and normal aging. 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro. IEEE. doi:10.1109/isbi.2008.4540941
  29. Chupin, M., Gérardin, E., Cuingnet, R., Boutet, C., Lemieux, L., Lehéricy, S., & Colliot, O. (2009). Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI. Hippocampus, 19(6), 579–587. doi:10.1002/hipo.20626.
  30. Clark, K. A., Woods, R. P., Rottenberg, D. A., Toga, A. W., & Mazziotta, J. C. (2006). Impact of acquisition protocols and processing streams on tissue segmentation of T1 weighted MR images. NeuroImage, 29(1), 185–202. doi:10.1016/j.neuroimage.2005.07.035.CrossRefPubMedGoogle Scholar
  31. Collins, D. L., & Evans, A. C. (1997). Animal: validation and applications of nonlinear registration-based segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 11(08), 1271–1294. doi:10.1142/s0218001497000597.CrossRefGoogle Scholar
  32. Collins, D. L., & Pruessner, J. C. (2010). Towards accurate, automatic segmentation of the hippocampus and amygdala from MRI by augmenting ANIMAL with a template library and label fusion. NeuroImage, 52(4), 1355–1366. doi:10.1016/j.neuroimage.2010.04.193.CrossRefPubMedGoogle Scholar
  33. Convit, A., Leon, M. D., Tarshish, C., Santi, S. D., Tsui, W., Rusinek, H., & George, A. (1997). Specific hippocampal volume reductions in individuals at risk for Alzheimer’s disease. Neurobiology of Aging, 18(2), 131–138. doi:10.1016/s0197-4580(97)00001-8.CrossRefPubMedGoogle Scholar
  34. Cook, M. J., Fish, D. R., Shorvon, S. D., Straughan, K., & Stevens, J. M. (1992). Hippocampal volumetric and morphometric studies in frontal and temporal lobe epilepsy. Brain, 115(4), 1001–1015. doi:10.1093/brain/115.4.1001.CrossRefPubMedGoogle Scholar
  35. Cootes, T., Taylor, C., Cooper, D., & Graham, J. (1995). Active shape models-their training and application. Computer Vision and Image Understanding, 61(1), 38–59. doi:10.1006/cviu.1995.1004.CrossRefGoogle Scholar
  36. Cootes, T. F., Edwards, G. J., & Taylor, C. J. (2001). Active appearance models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(6), 681–685.CrossRefGoogle Scholar
  37. Coupé, P., Manjón, J. V., Fonov, V., Pruessner, J., Robles, M., & Collins, D. L. (2011). Patch-based segmentation using expert priors: application to hippocampus and ventricle segmentation. NeuroImage, 54(2), 940–954. doi:10.1016/j.neuroimage.2010.09.018.CrossRefPubMedGoogle Scholar
  38. Crum, W. R., Scahill, R. I., & Fox, N. C. (2001). Automated hippocampal segmentation by regional fluid registration of serial MRI: validation and application in Alzheimer’s disease. NeuroImage, 13(5), 847–855. http://www.sciencedirect.com/science/article/pii/S105381190190744X.CrossRefPubMedGoogle Scholar
  39. Csernansky, J. G., Joshi, S., Wang, L., Haller, J. W., Gado, M., Miller, J. P., & Miller, M. I. (1998). Hippocampal morphometry in schizophrenia by high dimensional brain mapping. Proceedings of the National Academy of Sciences, 95(19), 11406–11411. doi:10.1073/pnas.95.19.11406.
  40. de Alejo, R. P., Ruiz-Cabello, J., Cortijo, M., Rodriguez, I., Echave, I., Regadera, J., & Graña, M. (2003). Computer-assisted enhanced volumetric segmentation magnetic resonance imaging data using a mixture of artificial neural networks. Magnetic Resonance Imaging, 21(8), 901–912. doi:10.1016/s0730-725x(03)00193-0.
  41. Dice, L. R. (1945). Measures of the amount of ecologic association between species. Ecology, 26(3), 297. doi:10.2307/1932409.CrossRefGoogle Scholar
  42. Duc, A. K., Modat, M., Leung, K. K., Kadir, T., & Ourselin, S. (2012). Manifold learning for atlas selection in multi atlas-based segmentation of hippocampus. In: D. R. Haynor, & S. Ourselin (Ed.), Medical Imaging 2012: Image Processing. SPIE. doi:10.1117/12.910602.
  43. Duchesne, S., Pruessner, J., & Collins, D. (2002). Appearance-based segmentation of medial temporal lobe structures. NeuroImage, 17(2), 515–531. doi:10.1006/nimg.2002.1188.CrossRefPubMedGoogle Scholar
  44. Duvernoy, H. M. (2005). The human hippocampus: functional anatomy, vascularization and serial sections with MRI. Berlin: Springer.Google Scholar
  45. Eggert, L. D., Sommer, J., Jansen, A., Kircher, T., & Konrad, C. (2012). Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. (Y. Fan, Ed.) PLoS ONE, 7(9), e45081. doi:10.1371/journal.pone.0045081.
  46. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., & Dale, A. M. (2002). Whole Brain Segmentation: Automated Labeling of Neuroanatomical Structures in the Human Brain. Neuron, 33(3), 341–355. http://www.sciencedirect.com/science/article/pii/S089662730200569X.
  47. Freeborough, P. A., Fox, N. C., & Kitney, R. I. (1997). Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine, 53(1), 15–25. doi:10.1016/s0169-2607(97)01803-8.CrossRefPubMedGoogle Scholar
  48. Frisoni, G. B. (2001). Structural imaging in the clinical diagnosis of Alzheimer’s disease: problems and tools. Journal of Neurology, Neurosurgery & Psychiatry, 70(6), 711–718. http://jnnp.bmj.com/content/70/6/711.short.CrossRefGoogle Scholar
  49. Frisoni, G. B., Fox, N. C., Jack, C. R., Scheltens, P., & Thompson, P. M. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77. doi:10.1038/nrneurol.2009.215.CrossRefPubMedCentralPubMedGoogle Scholar
  50. Friston, K. J., Ashburner, J., Frith, C. D., Poline, J.-B., Heather, J. D., & Frackowiak, R. S. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165–189. doi:10.1002/hbm.460030303.CrossRefGoogle Scholar
  51. Germeyan, S. C., Kalikhman, D., Jones, L., & Theodore, W. H. (2014). Automated versus manual hippocampal segmentation in preoperative and postoperative patients with epilepsy. Epilepsia. doi:10.1111/epi.12694.PubMedGoogle Scholar
  52. Geuze, E., Vermetten, E., & Bremner, J. D. (2005). MR-based in vivo hippocampal volumetrics: 1. Review of methodologies currently employed. Mol Psychiatry, 10(2), 147–159. doi:10.1038/sj.mp.4001580.CrossRefPubMedGoogle Scholar
  53. Ghanei, A., Soltanian-Zadeh, H., & Windham, J. P. (1998). A 3D deformable surface model for segmentation of objects from volumetric data in medical images. Computers in Biology and Medicine, 28(3), 239–253. doi:10.1016/s0010-4825(98)00007-9.CrossRefPubMedGoogle Scholar
  54. Greig, D., Porteous, B., & Seheult, A. (1989). Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society: Series B: Methodological, 271–279.Google Scholar
  55. Hajiesmaeili, M., Dehmeshki, J., Nakhjavanlo, B. B., & Ellis, T. (2014). Initialisation of 3D level set for hippocampus segmentation from volumetric brain MR images. In: C. M. Falco, C.-C. Chang, & X. Jiang (Ed.), Sixth International Conference on Digital Image Processing (ICDIP 2014). SPIE. doi:10.1117/12.2064402.
  56. Haller, J. W., Banerjee, A., Christensen, G. E., Gado, M., Joshi, S., Miller, M. I., & Csernansky, J. G. (1997). Three-dimensional hippocampal MR morphometry with high-dimensional transformation of a neuroanatomic atlas. Radiology, 202(2), 504–510. doi:10.1148/radiology.202.2.9015081.
  57. Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., & Duncan, J. S. (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping, 19(4), 224–247. doi:10.1002/hbm.10123.
  58. Han, X., & Fischl, B. (2007). Atlas renormalization for improved brain MR image segmentation across scanner platforms. IEEE Transactions on Medical Imaging, 26(4), 479–486. doi:10.1109/tmi.2007.893282.CrossRefPubMedGoogle Scholar
  59. Hao, Y., Wang, T., Zhang, X., Duan, Y., Yu, C., Jiang, T., & Fan, Y. (2014). Local label learning (LLL) for subcortical structure segmentation: application to hippocampus segmentation. Human Brain Mapping, 35(6), 2674–2697. doi:10.1002/hbm.22359.CrossRefPubMedGoogle Scholar
  60. Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers, A. (2006). Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. NeuroImage, 33(1), 115–126. http://www.sciencedirect.com/science/article/pii/S1053811906006458.CrossRefPubMedGoogle Scholar
  61. Hogan, R., Mark, K., Choudhuri, I., Wang, L., Joshi, S., Miller, M., & Bucholz, R. (2000). Magnetic resonance imaging deformation-based segmentation of the hippocampus in patients with mesial temporal sclerosis and temporal lobe epilepsy. Journal of Digital Imaging, 13, 217–218. doi:10.1007/BF03167670.CrossRefPubMedCentralPubMedGoogle Scholar
  62. Hu, S., Coupé, P., Pruessner, J. C., & Collins, D. L. (2011). Appearance-based modeling for segmentation of hippocampus and amygdala using multi-contrast MR imaging. NeuroImage, 58(2), 549–559. doi:10.1016/j.neuroimage.2011.06.054.CrossRefPubMedGoogle Scholar
  63. Jaccard, P. (1912). The distribuition of the flora in the Alpine Zone. New Phytologist, 11(2), 37–50. doi:10.1111/j.1469-8137.1912.tb05611.x.CrossRefGoogle Scholar
  64. Jack, C. R., Petersen, R. C., Xu, Y. C., O’Brien, P. C., Smith, G. E., Ivnik, R. J., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52(7), 1397–1397. doi:10.1212/wnl.52.7.1397.
  65. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841. doi:10.1006/nimg.2002.1132.CrossRefPubMedGoogle Scholar
  66. Joie, R. L., Fouquet, M., Mézenge, F., Landeau, B., Villain, N., Mevel, K., & Chételat, G. (2010). Differential effect of age on hippocampal subfields assessed using a new high-resolution 3T MR sequence. NeuroImage, 53(2), 506–514. doi:10.1016/j.neuroimage.2010.06.024.
  67. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1(4), 321–331. doi:10.1007/bf00133570.CrossRefGoogle Scholar
  68. Kelemen, A., Szekely, G., & Gerig, G. (1999). Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Transactions on Medical Imaging, 18(10), 828–839. doi:10.1109/42.811260.CrossRefPubMedGoogle Scholar
  69. Khan, A. R., Cherbuin, N., Wen, W., Anstey, K. J., Sachdev, P., & Beg, M. F. (2011). Optimal weights for local multi-atlas fusion using supervised learning and dynamic information (SuperDyn): validation on hippocampus segmentation. NeuroImage, 56(1), 126–139. doi:10.1016/j.neuroimage.2011.01.078.CrossRefPubMedGoogle Scholar
  70. Kim, H., Mansi, T., Bernasconi, N., & Bernasconi, A. (2012). Surface-based multi-template automated hippocampal segmentation: application to temporal lobe epilepsy. Medical Image Analysis, 16(7), 1445–1455. doi:10.1016/j.media.2012.04.008.CrossRefPubMedGoogle Scholar
  71. Kim, M., Wu, G., Li, W., Wang, L., Son, Y.-D., Cho, Z.-H., & Shen, D. (2013). Automatic hippocampus segmentation of 7.0Tesla MR images by combining multiple atlases and auto-context models. NeuroImage, 83, 335–345. doi:10.1016/j.neuroimage.2013.06.006.CrossRefPubMedCentralPubMedGoogle Scholar
  72. Klemencic, J., Pluim, J., Viergever, M., Schnack, H., & Valencic, V. (2004). Non-rigid registration based active appearance models for 3D medical image segmentation. Journal of Imaging Science and Technology, 48(2), 166–171.Google Scholar
  73. Konrad, C., Ukas, T., Nebel, C., Arolt, V., Toga, A., & Narr, K. (2009). Defining the human hippocampus in cerebral magnetic resonance images—an overview of current segmentation protocols. NeuroImage, 47(4), 1185–1195. doi:10.1016/j.neuroimage.2009.05.019.CrossRefPubMedCentralPubMedGoogle Scholar
  74. Kwak, K., Yoon, U., Lee, D.-K., Kim, G. H., Seo, S. W., Na, D. L., & Lee, J.-M. (2013). Fully-automated approach to hippocampus segmentation using a graph-cuts algorithm combined with atlas-based segmentation and morphological opening. Magnetic Resonance Imaging, 31(7), 1190–1196. doi:10.1016/j.mri.2013.04.008.
  75. Laakso, M., Soininen, H., Partanen, K., Lehtovirta, M., Hallikainen, M., Hänninen, T., & Riekkinen, P. (1998). MRI of the hippocampus in alzheimer’s disease: sensitivity, specificity, and analysis of the incorrectly classified subjects. Neurobiology of Aging, 19(1), 23–31. doi:10.1016/s0197-4580(98)00006-2.
  76. Leemput, K. V., Bakkour, A., Benner, T., Wiggins, G., Wald, L. L., Augustinack, J., & Fischl, B. (2009). Automated segmentation of hippocampal subfields from ultra-high resolution in vivo MRI. Hippocampus, 19(6), 549–557. doi:10.1002/hipo.20615.
  77. Leung, K. K., Barnes, J., Ridgway, G. R., Bartlett, J. W., Clarkson, M. J., Macdonald, K., & Ourselin, S. (2010). Automated cross-sectional and longitudinal hippocampal volume measurement in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 51(4), 1345–1359. http://www.sciencedirect.com/science/article/pii/S1053811910002880.
  78. Lötjönen, J. M., Wolz, R., Koikkalainen, J. R., Thurfjell, L., Waldemar, G., Soininen, H., & Rueckert, D. (2010). Fast and robust multi-atlas segmentation of brain magnetic resonance images. NeuroImage, 49(3), 2352–2365. doi:10.1016/j.neuroimage.2009.10.026.CrossRefPubMedGoogle Scholar
  79. Lötjönen, J., Wolz, R., Koikkalainen, J., Julkunen, V., Thurfjell, L., Lundqvist, R., & Rueckert, D. (2011). Fast and robust extraction of hippocampus from MR images for diagnostics of Alzheimer’s disease. NeuroImage, 56(1), 185–196. doi:10.1016/j.neuroimage.2011.01.062.
  80. Miranda, P. A., Falcao, A. X., & Udupa, J. K. (2009). Cloud bank: a multiple clouds model and its use in MR brain image segmentation. 2009 I.E. International Symposium on Biomedical Imaging: From Nano to Macro. IEEE. doi:10.1109/isbi.2009.5193095.
  81. Morra, J. H., Tu, Z., Apostolova, L. G., Green, A. E., Toga, A. W. & Thompson, P. M. (2008). Automatic subcortical segmentation using a contextual model. In D. Metaxas, L. Axel, G. Fichtinger & G. Székely (Eds.), Medical image computing and computer-assisted intervention - MICCAI 2008 (pp. 194-201). Berlin, Heidelberg: Springer.Google Scholar
  82. Mueller, S., Stables, L., Du, A., Schuff, N., Truran, D., Cashdollar, N., & Weiner, M. (2007). Measurement of hippocampal subfields and age-related changes with high resolution MRI at 4T. Neurobiology of Aging, 28(5), 719–726. doi:10.1016/j.neurobiolaging.2006.03.007.CrossRefPubMedCentralPubMedGoogle Scholar
  83. Mulder, E. R., de Jong, R. A., Knol, D. L., van Schijndel, R. A., Cover, K. S., Visser, P. J., & Vrenken, H. (2014). Hippocampal volume change measurement: Quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST. NeuroImage, 92, 169–181. doi:10.1016/j.neuroimage.2014.01.058.
  84. Nelson, M. D., Saykin, A. J., Flashman, L. A., & Riordan, H. J. (1997). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Schizophrenia Research, 24(1–2), 153. doi:10.1016/s0920-9964(97)82438-3.CrossRefGoogle Scholar
  85. Patenaude, B., Smith, S. M., Kennedy, D. N., & Jenkinson, M. (2011). A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage, 56(3), 907–922. doi:10.1016/j.neuroimage.2011.02.046.CrossRefPubMedCentralPubMedGoogle Scholar
  86. Pipitone, J., Park, M. T., Winterburn, J., Lett, T. A., Lerch, J. P., Pruessner, J. C., & Chakravarty, M. M. (2014). Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates. NeuroImage. doi:10.1016/j.neuroimage.2014.04.054.
  87. Platero, C., Tobar, M. C., Sanguino, J., & Velasco, O. (2014). A new label fusion method using graph cuts: application to hippocampus segmentation. In: IFMBE Proceedings (pp. 174–177). Springer Science + Business Media. doi:10.1007/978-3-319-00846-2_43.
  88. Pluta, J., Avants, B. B., Glynn, S., Awate, S., Gee, J. C., & Detre, J. A. (2009). Appearance and incomplete label matching for diffeomorphic template based hippocampus segmentation. Hippocampus, 19(6), 565–571. doi:10.1002/hipo.20619.CrossRefPubMedGoogle Scholar
  89. Pluta, J., Yushkevich, P., Das, S., & Wolk, D. (2012). In vivo analysis of hippocampal subfield atrophy in mild cognitive impairment via semi-automatic segmentation of T2-weighted MRI. Journal of Alzheimer’s Disease, 31(1), 85–99.PubMedCentralPubMedGoogle Scholar
  90. Pohl, K. M., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R. W., Kikinis, R., . . . Wells, W. M. (2007). A Hierarchical algorithm for MR brain image parcellation. IEEE Transactions on Medical Imaging, 26(9), 1201–1212. doi:10.1109/tmi.2007.901433.
  91. Rohlfing, T., Brandt, R., Menzel, R., & Maurer, C. R. (2004). Evaluation of atlas selection strategies for atlas-based image segmentation with application to confocal microscopy images of bee brains. NeuroImage, 21(4), 1428–1442. doi:10.1016/j.neuroimage.2003.11.010.CrossRefPubMedGoogle Scholar
  92. Sabuncu, M. R., Yeo, B. T., Leemput, K. V., Fischl, B., & Golland, P. (2010). A generative model for image segmentation based on label fusion. IEEE Transactions on Medical Imaging, 29(10), 1714–1729. doi:10.1109/tmi.2010.2050897.CrossRefPubMedCentralPubMedGoogle Scholar
  93. Schnabel, J. A., Lemieux, L., Wieshmann, U. C., & Arridge, S. R. (1999). Measurement of hippocampal volume changes in serial MRI scans. In: K. M. Hanson (Ed.), Medical Imaging 1999: Image Processing. SPIE. doi:10.1117/12.348535
  94. Shen, D., Moffat, S., Resnick, S. M., & Davatzikos, C. (2002). Measuring size and shape of the hippocampus in mr images using a deformable shape model. NeuroImage, 15(2), 422–434. doi:10.1006/nimg.2001.0987.CrossRefPubMedGoogle Scholar
  95. Tang, X., Mori, S., Ratnanather, T., & Miller, M. I. (2012). Segmentation of hippocampus and amygdala using multi-channel landmark large deformation diffeomorphic metric mapping. 2012 38th Annual Northeast Bioengineering Conference (NEBEC). IEEE. doi:10.1109/nebc.2012.6207140.
  96. Tong, T., Wolz, R., Coupé, P., Hajnal, J. V., & Rueckert, D. (2013). Segmentation of MR images via discriminative dictionary learning and sparse coding: application to hippocampus labeling. NeuroImage, 76, 11–23. doi:10.1016/j.neuroimage.2013.02.069.CrossRefPubMedGoogle Scholar
  97. van der Lijn, F., den Heijer, T., Breteler, M. M., & Niessen, W. J. (2008). Hippocampus segmentation in MR images using atlas registration, voxel classification, and graph cuts. NeuroImage, 43(4), 708–720. doi:10.1016/j.neuroimage.2008.07.058.CrossRefPubMedGoogle Scholar
  98. van der Lijn, F., de Bruijne, M., Klein, S., den Heijer, T., Hoogendam, Y. Y., van der Lugt, A., & Niessen, W. J. (2010). Automated brain structure segmentation based on atlas registration and appearance models. IEEE Transactions on Medical Imaging, 31(2), 276–286. doi:10.1109/tmi.2011.2168420.
  99. Wang, H., & Yushkevich, P. A. (2013). Multi-atlas segmentation with joint label fusion and corrective learning—an open source implementation. Frontiers in Neuroinformatics, 7. doi:10.3389/fninf.2013.00027.
  100. Wang, H., Das, S. R., Suh, J. W., Altinay, M., Pluta, J., Craige, C., & Yushkevich, P. A. (2011). A learning-based wrapper method to correct systematic errors in automatic image segmentation: Consistently improved performance in hippocampus, cortex and brain segmentation. NeuroImage, 55(3), 968–985. doi:10.1016/j.neuroimage.2011.01.006.
  101. Warfield, S., Zou, K., & Wells, W. (2004). Simultaneous Truth and Performance Level Estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Transactions on Medical Imaging, 23(7), 903–921. doi:10.1109/tmi.2004.828354.CrossRefPubMedCentralPubMedGoogle Scholar
  102. Wenger, E., Maartensson, J., Noack, H., Bodammer, N. C., Kühn, S., Schaefer, S., & Lövdén, M. (2014). Comparing manual and automatic segmentation of hippocampal volumes: Reliability and validity issues in younger and older brains. Human Brain Mapping, 35(8), 4236–4248. doi:10.1002/hbm.22473.
  103. Winterburn, J. L., Pruessner, J. C., Chavez, S., Schira, M. M., Lobaugh, N. J., Voineskos, A. N., & Chakravarty, M. M. (2013). A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging. NeuroImage, 74, 254–265. doi:10.1016/j.neuroimage.2013.02.003.CrossRefPubMedGoogle Scholar
  104. Wisse, L., Gerritsen, L., Zwanenburg, J., Kuijf, H., Luijten, P., Biessels, G., & Geerlings, M. (2012). Subfields of the hippocampal formation at 7T MRI: in vivo volumetric assessment. NeuroImage, 61(4), 1043–1049. doi:10.1016/j.neuroimage.2012.03.023.CrossRefPubMedGoogle Scholar
  105. Woods, R. P., Grafton, S. T., Holmes, C. J., Cherry, S. R., & Mazziotta, J. C. (1998). Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22(1), 139–152. doi:10.1097/00004728-199801000-00027.CrossRefPubMedGoogle Scholar
  106. Yushkevich, P. A., Wang, H., Pluta, J., Das, S. R., Craige, C., Avants, B. B., . . . Mueller, S. (2010). Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. NeuroImage, 53(4), 1208–1224. doi:10.1016/j.neuroimage.2010.06.040.
  107. Zarpalas, D., Gkontra, P., Daras, P., & Maglaveras, N. (2013). Hippocampus segmentation through gradient based reliability maps for local blending of ACM energy terms. 2013 I.E. 10th International Symposium on Biomedical Imaging. IEEE. doi:10.1109/isbi.2013.6556410.
  108. Zhou, J., & Rajapakse, J. C. (2005). Segmentation of subcortical brain structures using fuzzy templates. NeuroImage, 28(4), 915–924. doi:10.1016/j.neuroimage.2005.06.037.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.School of Computer SciencePUCRS - Pontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  2. 2.Department of Electrical Engineering of School of Engineering; Division of Neuroscience of School of Medicine and Brain Institute of Rio Grande do SulPontifícia Universidade Católica do Rio Grande do SulPorto AlegreBrazil
  3. 3.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA

Personalised recommendations