Neuroinformatics

, Volume 12, Issue 3, pp 365–379 | Cite as

Intensity Based Methods for Brain MRI Longitudinal Registration. A Study on Multiple Sclerosis Patients

  • Yago Diez
  • Arnau Oliver
  • Mariano Cabezas
  • Sergi Valverde
  • Robert Martí
  • Joan Carles Vilanova
  • Lluís Ramió-Torrentà
  • Àlex Rovira
  • Xavier Lladó
Original Article

Abstract

Registration is a key step in many automatic brain Magnetic Resonance Imaging (MRI) applications. In this work we focus on longitudinal registration of brain MRI for Multiple Sclerosis (MS) patients. First of all, we analyze the effect that MS lesions have on registration by synthetically eliminating some of the lesions. Our results show how a widely used method for longitudinal registration such as rigid registration is practically unconcerned by the presence of MS lesions while several non-rigid registration methods produce outputs that are significantly different. We then focus on assessing which is the best registration method for longitudinal MRI images of MS patients. In order to analyze the results obtained for all studied criteria, we use both descriptive statistics and statistical inference: one way ANOVA, pairwise t-tests and permutation tests.

Keywords

Brain MRI Longitudinal analysis Multiple sclerosis Registration 

Notes

Acknowledgments

We would like to thank to all the authors that have provided public registration algorithms. Moreover, we would like to specially thank the collaborators from University College London that provided us with the MS lesion filling software. This work has been supported by the Instituto de Salud Carlos III Grant PI09/91018, Grant VALTEC09-1-0025 from the Generalitat de Catalunya, and Grant CEM-Cat 2011 from the Fundació Esclerosi Múltiple. S. Valverde holds a FI-DGR2013 Grant from the Generalitat de Catalunya.

References

  1. Ardekani, B.A., Guckemus, S., Bachman, A., Hoptman, M.J., Wojtaszek, M., Nierenberg, J. (2005). Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. NeuroImage, 142(1), 67–76.Google Scholar
  2. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.PubMedCrossRefGoogle Scholar
  3. Ashburner, J., & Friston, K.J. (2004). Human Brain Function, chap High-dimensional image warping, 2nd edn. (pp. 673–694). Academic Press.Google Scholar
  4. Avants, B.B., Epstein, C.L., Grossman, M., Gee, J.C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Medical Image Analysis, 12(1), 26–41.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Cabezas, M., Oliver, A., Lladó, X., Freixenet, J., Bach Cuadra, M. (2011). A review of atlas-based segmentation for magnetic resonance brain images. Computer Methods and Programs in Biomedicine, 104(3), e158–e177.PubMedCrossRefGoogle Scholar
  6. Chard, D.T., Jackson, J.S., Miller, D.H., Wheeler-Kingshott, C.A.M. (2010). Reducing the impact of white matter lesions on automated measures of brain gray and white matter volumes. Journal of Magnetic Resonance Imaging, 32(1), 223–228.PubMedCrossRefGoogle Scholar
  7. Denton, E.R., Sonoda, L.I., Rueckert, D., Rankin, S.C., Hayes, C., Leach, M.O., Hill, D.L., Hawkes, D.J. (1999). Comparison and evaluation of rigid and non-rigid registration of breast MR images. Journal of Computer Assisted Tomography, 23(5), 800–805.PubMedCrossRefGoogle Scholar
  8. Diez, Y., Oliver, A., Llad´o, X., Freixenet, J., Mart´ı, J., Vilanova, J.C., Martí, R. (2011). Revisiting intensity-based image registration appplied to mammography. IEEE Transactions on Information Technology in BioMedicine, 15(5), 716–725.PubMedCrossRefGoogle Scholar
  9. Elliott, C., Arnold, D.L., Collins, D.L. (2013). Temporally consistent probabilistic detection of new multiple sclerosis lesions in brain mri. IEEE Transactions on Medical Imaging, 32(8), 1490–1502.PubMedCrossRefGoogle Scholar
  10. García-Lorenzo, D., Francis, S., Narayanan, S., Arnold, D.L., Collins, D.L. (2013). Review of automatic segmentation methods of multiple sclerosis white matter lesions on conventional magnetic resonance imaging. Medical Image Analysis, 17(1), 1–18.PubMedCrossRefGoogle Scholar
  11. Klein, A., Andersson, J., Ardekani, B.A., Ashburner, J., Avants, B.B., Chiang, M., Christensen, G.E., Collins, D.L., Gee, J., Hellier, P., Song Hyun, J., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R.P., Mann, J.J., Parseya, R. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Liao, S., Wu, G., Shen, D. (2012). A statistical framework for inter-group image registration. Neuroinformatics, 10(4), 367–378.PubMedCrossRefGoogle Scholar
  13. Liu, C., Iglesias, J.E., Tu, Z. (2013). Deformable templates guided discriminative models for robust 3d brain mri segmentation for the alzheimer’s disease neuroimaging initiative. Neuroinformatics, 11(4), 447–468.PubMedCrossRefGoogle Scholar
  14. Lladó, X., Ganiler, O., Oliver, A., Martí, R., Freixenet, J., Valls, L., Rovira A (2012a). Automated detection of multiple sclerosis lesions in serial brain MRI. Neuroradiology, 54(8), 787–807.CrossRefGoogle Scholar
  15. Lladó, X., Oliver, A., Cabezas, M., Freixenet, J., Vilanova, J.C., Quiles, A., Valls, L., Ramió-Torrentà, L., Rovira, A. (2012b). Segmentation of multiple sclerosis lesions in brain MRI: a review of automated approaches. Information Sciences, 186(1), 164–185.CrossRefGoogle Scholar
  16. Menke, J., & Martinez, T. (2004). Using permutations instead of student’s t distribution for p-values in paired difference algorithm comparisons. In Proceedings IEEE international joint conference on neural networks (pp. 1331–1335).Google Scholar
  17. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S. (2010). Fast free-form deformation using graphics processing units. Computer Methods and Programs in Biomedicine, 98(3), 278–284.PubMedCrossRefGoogle Scholar
  18. Moraal, B., Meier, D.S., Poppe, P.A., Geurts, J.J., Vrenken, H., Jonker, W.M., Knol, D.L., van Schijndel, R.A., Pouwels, P.J., Pohl, C., Bauer, L., Sandbrink, R., Guttman, C.R., Barkhof, F. (2009). Subtraction mr images in a multiple sclerosis multicenter clinical trial setting. Radiology, 250(2), 506–514.PubMedCentralPubMedCrossRefGoogle Scholar
  19. Moraal, B.,Wattjes, M.P., Geurts, J.J., Knol, D.L., van Schijndel, R.A., Pouwels, P.J., Vrenken, H., Barkhof, F. (2010). Improved detection of active multiple sclerosis lesions: 3d subtraction imaging. Radiology, 255(1), 154–163.PubMedCrossRefGoogle Scholar
  20. Ou, Y., Sotiras, A., Paragios, N., Davatzikos, C. (2011). Dramms: deformable registration via attribute matching and mutual-saliency weighting. Medical Image Analysis, 15(4), 622–639.PubMedCentralPubMedCrossRefGoogle Scholar
  21. Parisot, S., Duffau, H., Chemouny, S., Paragios, N. (2012). Joint tumor segmentation and dense deformable registration of brain MR images. In Proceedings medical image computing and computer assisted intervention (pp. 651–658).Google Scholar
  22. Prados, F., Boada, I., Feixas, M., Prats-Galino, A., Blasco, G., Puig, J., Pedraza, S. (2012). Information-theoretic approach for automated white matter fiber tracts reconstruction. Neuroinformatics, 10(3), 305–318.PubMedCrossRefGoogle Scholar
  23. Rohlfing, T. (2012). Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Transactions on Medical Imaging, 31(2), 153–163.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L., Leach, M.O., Hawkes, D.J. (1999). Non-rigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8), 712–721.PubMedCrossRefGoogle Scholar
  25. Rueckert, D., Aljabar, P., Heckemann, R.A., Hajnal, J.V., Hammers, A. (2006). Diffeomorphic registration using B-splines. In Proceedings medical image computing and computer assisted intervention (pp. 702–709).Google Scholar
  26. Schnabel, J., Rueckert, D., Quist, M., Blackall, J., Castellano-Smith, A., Hartkens, T., Penney, G., Hall, W., Liu, H., Truwit, C., Gerritsen, F., Hill, D., Hawkes, D.J. (2001). A generic framework for non-rigid registration based on non-uniform multi-level free-form deformations. In Proceedings medical image computing and computer assisted intervention (pp. 573–581).Google Scholar
  27. Sdika, M., & Pelletier, D. (2009). Nonrigid registration of multiple sclerosis brain images using lesion inpainting for morphometry or lesion mapping. Human Brain Mapping, 30(4), 1060–1067.PubMedCrossRefGoogle Scholar
  28. Shah, M., Xiao, Y., Subbanna, N., Francis, S., Arnold, D.L., Arbel, T. (2011). Evaluating intensity normalization on MRIs of human brain with multiple sclerosis. Medical Image Analysis, 15(2), 267–282.PubMedCrossRefGoogle Scholar
  29. Shi, W., Zhuang, X., Pizarro, L., Bai, W., Wang, H., Tung, K., Edwards, P., Rueckert, D. (2012). Registration using sparse free-form deformations. In Proceedings medical image computing and computer assisted intervention (pp. 659–666).Google Scholar
  30. Thirion, J.P. (1996). Non-rigid matching using demons. In Proceedings IEEE conference on computer vision and pattern recognition (pp. 245–261).Google Scholar
  31. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N. (2009). Diffeomorphic demons: efficient non-parametric image registration. NeuroImage, 45(1 (S1)), S61–S72.PubMedCrossRefGoogle Scholar
  32. Wang, S., Summers, R.M., (2012). Machine learning and radiology. Medical Image Analysis, 16(5), 933–951.PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yago Diez
    • 1
  • Arnau Oliver
    • 1
  • Mariano Cabezas
    • 1
  • Sergi Valverde
    • 1
  • Robert Martí
    • 1
  • Joan Carles Vilanova
    • 2
  • Lluís Ramió-Torrentà
    • 3
  • Àlex Rovira
    • 4
  • Xavier Lladó
    • 1
  1. 1.Computer Vision and Robotics GroupUniversity of GironaGironaSpain
  2. 2.Girona Magnetic Resonance CenterGironaSpain
  3. 3.Multiple Sclerosis and Neuroimmunology UnitDr. Josep Trueta University Hospital, Institut d’Investigació Biomèdica de GironaGironaSpain
  4. 4.Magnetic Resonance Unit, Department of RadiologyVall d’Hebron University HospitalBarcelonaSpain

Personalised recommendations