, Volume 12, Issue 2, pp 291–305 | Cite as

Modeling the Autism Spectrum Disorder Phenotype

  • Alexa T. McCray
  • Philip Trevvett
  • H. Robert Frost
Data Original Article


Autism Spectrum Disorder (ASD) is highly heritable, and although there has been active research in an attempt to discover the genetic factors underlying ASD, diagnosis still depends heavily on behavioral assessments. Recently, several large-scale initiatives, including those of the Autism Consortium, have contributed to the collection of extensive information from families affected by ASD. Our goal was to develop an ontology that can be used 1) to provide improved access to the data collected by those who study ASD and other neurodevelopmental disorders, and 2) to assess and compare the characteristics of the instruments that are used in the assessment of ASD. We analyzed two dozen instruments used to assess ASD, studying the nature of the questions asked and items assessed, the method of delivery, and the overall scope of the content. These data together with the extensive literature on ASD contributed to our iterative development of an ASD phenotype ontology. The final ontology comprises 283 concepts distributed across three high-level classes, ‘Personal Traits’, ‘Social Competence’, and ‘Medical History’. The ontology is fully integrated with the Autism Consortium database, allowing researchers to pose ontology-based questions. The ontology also allows researchers to assess the degree of overlap among a set of candidate instruments according to several objective criteria. The ASD phenotype ontology has promise for use in research settings where extensive phenotypic data have been collected, allowing a concept-based approach to identifying behavioral features of importance and for correlating these with genotypic data.


Ontologies Autism spectrum disorder Behavioral phenotype Standardized diagnostic and screening instruments 



The authors were supported in part by grants from an Anonymous Foundation, the Autism Consortium, and the Harvard Clinical and Translational Science Center (NIH/NCRR UL1 RR025758-01). The authors thank Juliane Schneider and Cecilia Vernes for their contributions to the ontology and the team at MGH who developed the Autism Consortium database, including David Pauls and Julia O’Rourke.

Supplementary material

12021_2013_9211_MOESM1_ESM.pdf (170 kb)
ESM 1 (PDF 170 kb)
12021_2013_9211_MOESM2_ESM.owl (169 kb)
ESM 2 (OWL 168 kb)
12021_2013_9211_MOESM3_ESM.pdf (234 kb)
ESM 3 (PDF 233 kb)
12021_2013_9211_MOESM4_ESM.pdf (1.6 mb)
ESM 4 (PDF 1655 kb)
12021_2013_9211_MOESM5_ESM.pdf (176 kb)
ESM 5 (PDF 176 kb)


  1. Abrahams, B. S., & Geschwind, D. H. (2008). Advances in autism genetics: on the threshold of a new neurobiology. Nature Reviews Genetics, 9(5), 341–355.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Achenbach, T. M., & Dumenci, L. (2001). Advances in empirically based assessment: Revised cross-informant syndromes and new DSM-oriented scales for the CBCL, YSR, and TRF: comment on Lengua, Sadowksi, Friedrich, and Fischer. Journal of Consulting and Clinical Psychology, 69(4), 699–702.PubMedCrossRefGoogle Scholar
  3. Achenbach, T. M., & Ruffle, T. M. (2000). The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatrics in Review, 21(1), 265–271.PubMedCrossRefGoogle Scholar
  4. AGRE—Autism Genetic Resource Exchange.
  5. Autism Consortium.
  6. Axelrod, B. N. (2002). Validity of the Wechsler abbreviated scale of intelligence and other very short forms of estimating intellectual functioning. Assessment, 9(1), 17–23.PubMedCrossRefGoogle Scholar
  7. Baron-Cohen, S., Lombardo, M. V., Auyeung, B., Ashwin, E., Chakrabarti, B., & Knickmeyer, R. (2011). Why are autism spectrum conditions more prevalent in males? PLoS Biology, 9(6), e1001081.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Berg, J. M., & Geschwind, D. H. (2012). Autism genetics: searching for specificity and convergence. Genome Biology, 13(7), 247.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bilder, R. M., Sabb, F. W., Parker, D. S., Kalar, D., Chu, W. W., Fox, J., et al. (2009). Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry, 14(4–5), 419–450.PubMedCentralPubMedCrossRefGoogle Scholar
  10. Bishop, D. V. M. (1998). Children’s communication checklist-2 (CCC-2). Development of the children’s communication checklist (CCC): a method for assessing qualitative aspects of communicative impairments in children. Journal of Child Psychology and Psychiatry, 39, 879–891.PubMedCrossRefGoogle Scholar
  11. Bishop, D. V. M., & Baird, G. (2001). Parent and teacher report of pragmatic aspects of communication: use of the children’s communication checklist in a clinical setting. Developmental Medicine and Child Neurology, 43(12), 809–818.PubMedCrossRefGoogle Scholar
  12. Bishop, S. L., Guthrie, W., Coffing, M., & Lord, C. (2011). Convergent validity of the mullen scales of early learning and the differential ability scales in children with autism spectrum disorders. American Journal on Intellectual and Developmental Disabilities, 116(5), 331–343.PubMedCrossRefGoogle Scholar
  13. Bodenreider O. (2008). Biomedical ontologies in action: role in knowledge management, data integration and decision support. Yearb Med Inform. 67–79.Google Scholar
  14. Bodfish JW, Symons FJ, Lewis MH (1999). Repetitive behavior scale-revised (RBS-R). Western Carolina Center Research ReportsGoogle Scholar
  15. Bodfish, J. W., Symons, F. J., Parker, D. E., & Lewis, M. H. (2000). Varieties of repetitive behavior in autism: comparisons to mental retardation. J Aut Dev Disord, 30(3), 237–243.CrossRefGoogle Scholar
  16. Bug, W. J., Ascoli, G. A., Grethe, J. S., Gupta, A., Fennema-Notestine, C., Laird, A. R., et al. (2008). The NIFSTD and BIRNLex vocabularies: Building comprehensive ontologies for neuroscience. Neuroinformatics, 6(3), 175–194.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Committee on Children With Disabilities. (2001). Technical report: the pediatrician’s role in the diagnosis and management of autistic spectrum disorder in children. Pediatrics, 107(5), E85.CrossRefGoogle Scholar
  18. Constantino, J. N., Przybeck, T., Friesen, D., & Todd, R. D. (2000). Reciprocal social behavior in children with and without pervasive developmental disorders. J Dev and Behavioral Pediatrics., 21, 2–11.CrossRefGoogle Scholar
  19. Constantino, J. N., Davis, S. A., Todd, R. D., et al. (2003). Validation of a brief quantitative measure of autistic traits: comparison of the social responsiveness scale with the autism diagnostic interview-revised. Journal of Autism and Developmental Disorders, 33(4), 427–433.PubMedCrossRefGoogle Scholar
  20. Dawson, G., Estes, A., Munson, J., Schellenberg, G., Bernier, R., & Abbott, R. (2007). Quantitative assessment of autism symptom-related traits in probands and parents: broader phenotype autism symptom scale. Journal of Autism and Developmental Disorders, 37(3), 523–536.PubMedCrossRefGoogle Scholar
  21. Dean, R. S. (1978). Reliability and predictive validity of the dean laterality preference schedule with preadolescents. Perceptual and Motor Skills, 47(3 Pt 2), 1345–1346.PubMedCrossRefGoogle Scholar
  22. Derogatis, L. R., Rickels, K., & Rock, A. F. (1976). The SCL-90 and the MMPI: a step in the validation of a new self-report scale. Brit J Psychiat., 128, 280–289.PubMedCrossRefGoogle Scholar
  23. Devlin, B., & Scherer, S. W. (2012). Genetic architecture in autism spectrum disorder. Current Opinion in Genetics and Development, 22(3), 229–237.PubMedCrossRefGoogle Scholar
  24. Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition, Text Revision (DSM-IV-TR), Washington, DC: American Psychiatric Association, 2000Google Scholar
  25. Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM V), Washington DC: American Psychiatric Association, 2013.
  26. Dunn, L. M., & Dunn, L. M. (1981). Peabody picture vocabulary test—Revised. Circle Pines: American Guidance Systems.Google Scholar
  27. Dutra, L., Campbell, L., & Westen, D. (2004). Quantifying clinical judgment in the assessment of adolescent psychopathology: reliability, validity, and factor structure of the child behavior checklist for clinician report. Journal of Clinical Psychology, 60(1), 65–85.PubMedCrossRefGoogle Scholar
  28. Eaves, L. C., Wingert, H. D., Ho, H. H., & Mickelson, E. C. (2006). Screening for autism spectrum disorders with the social communication questionnaire. Journal of Developmental and Behavioral Pediatrics, 27(2 Suppl), S95–S103.PubMedCrossRefGoogle Scholar
  29. El-Fishawy, P., & State, M. W. (2010). The genetics of autism: key issues, recent findings, and clinical implications. The Psychiatric Clinics of North America, 33(1), 83–105.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Falkmer, T., Anderson, K., Falkmer, M., & Horlin, C. (2013). Diagnostic procedures in autism spectrum disorders: a systematic literature review. European Child and Adolescent Psychiatry, 22(6), 329–340.PubMedCrossRefGoogle Scholar
  31. Fischbach, G. D., & Lord, C. (2010). The Simons simplex collection: a resource for identification of autism genetic risk factors. Neuron, 68(2), 192–195.PubMedCrossRefGoogle Scholar
  32. Folstein, S. E., & Rosen-Sheidley, B. (2001). Genetics of autism: complex aetiology for a heterogeneous disorder. Nature Reviews Genetics, 2(12), 943–955.PubMedCrossRefGoogle Scholar
  33. Fombonne, E. (2009). Epidemiology of pervasive developmental disorders. Pediatric Research, 65(6), 591–598.PubMedCrossRefGoogle Scholar
  34. Gallagher, C., & Burke, T. (2007). Age, gender and IQ effects on the Rey-Osterrieth complex figure test. British Journal of Clinical Psychology, 46(Pt 1), 35–45.PubMedCrossRefGoogle Scholar
  35. Gardner, D., Akil, H., Ascoli, G. A., Bowden, D. M., Bug, W., Donohue, D. E., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6(3), 149–160.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Geschwind, D. H. (2009). Advances in autism. Annual Review of Medicine, 60, 367–380.PubMedCentralPubMedCrossRefGoogle Scholar
  37. Gioia, G. A., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). Behavior rating inventory of executive function. Child Neuropsychology, 6(3), 235–238.PubMedCrossRefGoogle Scholar
  38. Gioia, G. A., Espy, K. A., & Isquith, P. K. (2003). Behavior rating inventory of executive function-preschool version (BRIEF-P). Lutz: Psychological Assessment Resources.Google Scholar
  39. Hall, D., Huerta, M. F., McAuliffe, M. J., & Farber, G. K. (2012). Sharing heterogeneous data: the national database for autism research. Neuroinformatics, 10(4), 331–339.PubMedCrossRefGoogle Scholar
  40. Hassanpour, S., O’Connor, M. J., & Das, A. K. (2011). Evaluation of semantic-based information retrieval methods in the autism phenotype domain. AMIA Annu Symp Proc., 2011, 569–577.PubMedCentralPubMedGoogle Scholar
  41. Hoehndorf, R., Dumontier, M., Gkoutos, G. V. (2012). Evaluation of research in biomedical ontologies. Brief Bioinform. [Epub ahead of print]Google Scholar
  42. Homack, S., Lee, D., & Riccio, C. A. (2005). Test review: Delis-Kaplan executive function system. Journal of Clinical and Experimental Neuropsychology, 27(5), 599–609.PubMedCrossRefGoogle Scholar
  43. Huerta, M., & Lord, C. (2012). Diagnostic evaluation of autism spectrum disorders. Pediatric Clinics of North America, 59(1), 103–111. xi.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Imam, F. T., Larson, S. D., Bandrowski, A., Grethe, J. S., Gupta, A., & Martone, M. E. (2012). Development and use of Ontologies inside the neuroscience information framework: a practical approach. Frontiers in Genetics, 3, 111.PubMedCentralPubMedCrossRefGoogle Scholar
  45. International Classification of Functioning, Disability, and Health. World Health Organization.
  46. Isquith, P. K., Gioia, G. A., & Espy, K. A. (2004). Executive function in preschool children: examination through everyday behavior. Developmental Neuropsychology, 26(1), 403–422.PubMedCrossRefGoogle Scholar
  47. Johnson, C. P., & Myers, S. M. (2007). Council on children with disabilities. Identification and evaluation of children with autism spectrum disorders. Pediatrics, 120, 1183–1215.PubMedCrossRefGoogle Scholar
  48. Kanner, L. (1943). Autistic disturbances of affective contact. The Nervous Child, 250(2), 217–250.Google Scholar
  49. Keith, T. Z. (1990). Confirmatory and hierarchical confirmatory analysis of the differential ability scales. Journal of Psychoeducational Assessment, 8(3), 391–405.CrossRefGoogle Scholar
  50. Keith, T. Z., Low, J. A., Reynolds, M. R., Patel, P. G., & Ridley, K. P. (2010). Higher-order factor structure of the differential ability scales–II: consistency across ages 4 to 17. Psychology in the Schools, 47(7), 676–697.Google Scholar
  51. Kim, S. H., & Lord, C. (2012). Combining information from multiple sources for the diagnosis of autism spectrum disorders for toddlers and young preschoolers from 12 to 47 months of age. Journal of Child Psychology and Psychiatry, 53(2), 143–151.PubMedCentralPubMedCrossRefGoogle Scholar
  52. Kirkwood, M. W., Weiler, M. D., Bernstein, J. H., Forbes, P. W., & Waber, D. P. (2001). Sources of poor performance on the Rey-Osterrieth complex figure test among children with learning difficulties: a dynamic assessment approach. Clinical Neuropsychology, 15(3), 345–356.CrossRefGoogle Scholar
  53. Lajonchere, C. M., & AGRE Consortium. (2010). Changing the landscape of autism research: the autism genetic resource exchange. Neuron, 68(2), 187–191.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Lam, K. S., & Aman, M. G. (2007). The repetitive behavior scale-revised: independent validation in individuals with autism spectrum disorders. Journal of Autism and Developmental Disorders, 37(5), 855–866.PubMedCrossRefGoogle Scholar
  55. Larson, S. D., & Martone, M. E. (2009). Ontologies for neuroscience: what are they and what are they good for? Frontiers in Neuroscience, 3(1), 60–67.PubMedCentralPubMedCrossRefGoogle Scholar
  56. LeCouteur, A., Rutter, M., Lord, C., & Rios, P. (1989). Autism diagnostic interview: a standardized investigator-based instrument. Journal of Autism and Developmental Disorders, 19(3), 363–387.CrossRefGoogle Scholar
  57. LeCouteur, A., Lord, C., & Rutter, M. (2003). Autism diagnostic interview-revised (ADI-R). Los Angeles: Western Psychological Services.Google Scholar
  58. Lengua, L. J., Sadowski, C. A., Friedrich, W. N., & Fisher, J. (2001). Rationally and empirically derived dimensions of children’s symptomatology: expert ratings and confirmatory factor analyses of the CBCL. Journal of Consulting and Clinical Psychology, 69(4), 683–698.PubMedCrossRefGoogle Scholar
  59. Levy, S. E., Mandell, D. S., & Schultz, R. T. (2009). Autism. Lancet., 374(9701), 1627–1638.CrossRefGoogle Scholar
  60. Lord, C., & Jones, R. M. (2012). Annual research review: re-thinking the classification of autism spectrum disorders. Journal of Child Psychology and Psychiatry, 53(5), 490–509.PubMedCentralPubMedCrossRefGoogle Scholar
  61. Lord, C., Rutter, M., Goode, S., Heemsbergen, J., Jordan, H., Mawhood, L., et al. (1989). Autism diagnostic observation schedule: a standardized observation of communicative and social behavior. Journal of Autism and Developmental Disorders, 19(2), 185–212.PubMedCrossRefGoogle Scholar
  62. Lord, C., Rutter, M., & Le Couteur, A. (1994). Autism diagnostic interview-revised: a revised version of a diagnostic interview for caregivers of individuals with possible pervasive developmental disorders. Journal of Autism and Developmental Disorders, 24(5), 659–685.PubMedCrossRefGoogle Scholar
  63. Lord, C., Risi, S., Lambrecht, L., et al. (2000). The autism diagnostic observation schedule-generic: a standard measure of social and communication deficits associated with the spectrum of autism. Journal of Autism and Developmental Disorders, 30(3), 205–223.PubMedCrossRefGoogle Scholar
  64. Lord, C., Rutter, M., DiLavore, P. C., & Risi, S. (2001). Autism diagnostic observation schedule (ADOS). Los Angeles: Western Psychological Services.Google Scholar
  65. Macedoni-Lukšič, M., Petrič, I., Cestnik, B., & Urbančič, T. (2011). Developing a deeper understanding of autism: connecting knowledge through literature mining. Autism Res Treat, 2011, 307152.PubMedCentralPubMedGoogle Scholar
  66. Mahjouri, S., & Lord, C. E. (2012). What the DSM-5 portends for research, diagnosis, and treatment of autism spectrum disorders. Current Psychiatry Reports, 14(6), 739–747.PubMedCrossRefGoogle Scholar
  67. Massa, J., Gomes, H., Tartter, V., Wolfson, V., & Halperin, J. M. (2008). Concordance rates between parent and teacher clinical evaluation of language fundamentals observational rating scale. International Journal of Language & Communication Disorders, 43(1), 99–110.CrossRefGoogle Scholar
  68. Matson, J. L. (2007). Current status of differential diagnosis for children with autism spectrum disorders. Research in Developmental Disabilities, 28(2), 109–118.PubMedCrossRefGoogle Scholar
  69. Mattila, M. L., Kielinen, M., Linna, S. L., Jussila, K., Ebeling, H., Bloigu, R., et al. (2011). Autism spectrum disorders according to DSM-IV-TR and comparison with DSM-5 draft criteria: an epidemiological study. Journal of the American Academy of Child and Adolescent Psychiatry, 50(6), 583–592.PubMedCrossRefGoogle Scholar
  70. McPartland, J., & Volkmar, F. R. (2012). Autism and related disorders. Handbook of Clinical Neurology, 106, 407–418.PubMedCrossRefGoogle Scholar
  71. Medical Subject Headings. National Library of Medicine.
  72. Miles, J. H. (2011). Autism spectrum disorders–a genetics review. Genetics in Medicine, 13(4), 278–294.PubMedCrossRefGoogle Scholar
  73. Moldin, S. O., & Rubenstein, J. L. R. (2006). Understanding autism: from basic neuroscience to treatment. Boca Raton: CRC Press.CrossRefGoogle Scholar
  74. Mullen, E. M. (1995). Mullen scales of early learning, AGS edition (Mullen). Circle Pines: American Guidance Service.Google Scholar
  75. NCBO—National Center for Biomedical Ontologies.
  76. NDAR - National Database for Autism Research.
  77. Noy, N. F., Shah, N. H., Whetzel, P. L., Dai, B., Dorf, M., Griffith, N., Jonquet, C., Rubin, D. L., Storey, M. A., Chute, C. G., Musen, M.A. (2009). BioPortal: ontologies and integrated data resources at the click of a mouse. Nucleic Acids Research 37Google Scholar
  78. Noy, N., Tudorache, T., Nyulas, C., & Musen, M. (2010). The ontology life cycle: integrated tools for editing, publishing, peer review, and evolution of ontologies. AMIA Annu Symp Proc, 2010, 552–556.PubMedCentralPubMedGoogle Scholar
  79. Pandolfi, V., Magyar, C. I., & Dill, C. A. (2009). Confirmatory factor analysis of the child behavior checklist 1.5-5 in a sample of children with autism spectrum disorders. Journal of Autism and Developmental Disorders, 39(7), 986–995.PubMedCentralPubMedCrossRefGoogle Scholar
  80. Petric, I., Urbanicic, T., & Cestnik, B. (2007). Discovering hidden knowledge from biomedical literature. Informatica, 31, 15–20.Google Scholar
  81. Price, L. R., Raju, N., Lurie, A., Wilkins, C., & Zhu, J. (2006). Conditional standard errors of measurement for composite scores on the Wechsler preschool and primary scale of intelligence-third edition. Psychological Reports, 98(1), 237–252.PubMedCrossRefGoogle Scholar
  82. Protégé ontology editor and knowledge-base framework.
  83. Risi, S., Lord, C., Gotham, K., Corsello, C., Chrysler, C., Szatmari, P., et al. (2006). Combining information from multiple sources in the diagnosis of autism spectrum disorders. Journal of the American Academy of Child and Adolescent Psychiatry, 45(9), 1094–1103.PubMedCrossRefGoogle Scholar
  84. Rubin, D. L., Shah, N. H., & Noy, N. F. (2008). Biomedical ontologies: a functional perspective. Briefings in Bioinformatics, 9(1), 75–90.PubMedCrossRefGoogle Scholar
  85. Rutter, M. L. (2011). Progress in understanding autism: 2007–2010. Journal of Autism and Developmental Disorders, 41(4), 395–404.PubMedCrossRefGoogle Scholar
  86. Scattone, D., Raggio, D. J., & May, W. (2011). Comparison of the Vineland adaptive behavior scales, second edition, and the Bayley scales of infant and toddler development, third edition. Psychological Reports, 109(2), 626–634.PubMedCrossRefGoogle Scholar
  87. Scherer, S. W., & Dawson, G. (2011). Risk factors for autism: translating genomic discoveries into diagnostics. Human Genetics, 130(1), 123–148.PubMedCrossRefGoogle Scholar
  88. Simons Foundation Autism Research Initiative (SFARI).
  89. Sparrow, S. S., & Cicchetti, D. V. (1985). Diagnostic uses of the Vineland adaptive behavior scales. Journal of Pediatric Psychology, 10(2), 215–225.PubMedCrossRefGoogle Scholar
  90. Sparrow, S. S., Cicchetti, D. V., & Balla, D. A. (2005). Vineland adaptive behavior scales, second edition (Vineland-II). Circle Pines: AGS Publishing.Google Scholar
  91. Tager-Flusberg, H., & Joseph, R. M. (2003). Identifying neurocognitive phenotypes in autism. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 358(1430), 303–314.PubMedCentralPubMedCrossRefGoogle Scholar
  92. Tomanik, S. S., Pearson, D. A., Loveland, K. A., Lane, D. M., & Bryant, S. J. (2007). Improving the reliability of autism diagnoses: examining the utility of adaptive behavior. Journal of Autism and Developmental Disorders, 37(5), 921–928.PubMedCrossRefGoogle Scholar
  93. Tsatsanis, K. D., Dartnall, N., Cicchetti, D., Sparrow, S. S., Klin, A., & Volkmar, F. R. (2003). Concurrent validity and classification accuracy of the Leiter and Leiter-R in low-functioning children with autism. Journal of Autism and Developmental Disorders, 33(1), 23–30.PubMedCrossRefGoogle Scholar
  94. Tu, S. W., Tennakoon, L., O’Connor, M., Shankar, R., & Das, A. (2008). Using an integrated ontology and information model for querying and reasoning about phenotypes: the case of autism. AMIA Annu Symp Proc, 6, 727–731.Google Scholar
  95. Unified Medical Language System. National Library of Medicine.
  96. Varni, J. W., Seid, M., & Kurtin, P. S. (2001). PedsQL 4.0: reliability and validity of the pediatric quality of life inventory version 4.0 generic core scales in healthy and patient populations. Medical Care, 39(8), 800–812.PubMedCrossRefGoogle Scholar
  97. Volkmar, F. R., & Reichow, B. (2013). Autism in DSM-5: progress and challenges. Mol Autism, 4(1), 13.PubMedCentralPubMedCrossRefGoogle Scholar
  98. Volkmar, F. R., Sparrow, S. S., Goudreau, D., Cicchetti, D. V., Paul, R., & Cohen, D. J. (1987). Social deficits in autism: an operational approach using the Vineland adaptive behavior scales. Journal of the American Academy of Child and Adolescent Psychiatry, 26(2), 156–161.PubMedCrossRefGoogle Scholar
  99. Volkmar, F. R., State, M., & Klin, A. (2009). Autism and autism spectrum disorders: diagnostic issues for the coming decade. Journal of Child Psychology and Psychiatry, 50(1–2), 108–115.PubMedCrossRefGoogle Scholar
  100. Wagner, R. K., Torgesen, J. K., & Rashotte, C. A. (1999). Comprehensive test of phonological processing. Austin: PRO-ED, Inc.Google Scholar
  101. Walker, D. R., Thompson, A., Zwaigenbaum, L., Goldberg, J., Bryson, S. E., Mahoney, W. J., et al. (2004). Specifying PDD-NOS: a comparison of PDD-NOS, Asperger syndrome, and autism. Journal of the American Academy of Child and Adolescent Psychiatry, 43(2), 172–180.PubMedCrossRefGoogle Scholar
  102. Wall, D. P., Kosmicki, J., Deluca, T. F., Harstad, E., & Fusaro, V. A. (2012). Use of machine learning to shorten observation-based screening and diagnosis of autism. Transl Psychiatry., 2, e100.PubMedCentralPubMedCrossRefGoogle Scholar
  103. Ward-King, J., Cohen, I. L., Penning, H., & Holden, J. J. A. (2010). Brief report: telephone administration of the autism diagnostic interview-revised: Reliability and suitability for use in research. Journal of Autism and Developmental Disorders, 40, 1285–1290.PubMedCrossRefGoogle Scholar
  104. Wechsler, D. (2003). Wechsler preschool and primary scale of intelligence – Third Edition. San Antonio: The Psychological Corp.Google Scholar
  105. Wing, L., Gould, J., & Gillberg, C. (2011). Autism spectrum disorders in the DSM-V: better or worse than the DSM-IV? Research in Developmental Disabilities, 32(2), 768–773.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Alexa T. McCray
    • 1
  • Philip Trevvett
    • 1
  • H. Robert Frost
    • 1
    • 2
  1. 1.Center for Biomedical InformaticsHarvard Medical SchoolBostonUSA
  2. 2.Institute for Quantitative Biomedical SciencesDartmouth CollegeHanoverUSA

Personalised recommendations