, Volume 12, Issue 1, pp 209–225 | Cite as

Action and Language Mechanisms in the Brain: Data, Models and Neuroinformatics

  • Michael A. ArbibEmail author
  • James J. Bonaiuto
  • Ina Bornkessel-Schlesewsky
  • David Kemmerer
  • Brian MacWhinney
  • Finn Årup Nielsen
  • Erhan Oztop
Original Article


We assess the challenges of studying action and language mechanisms in the brain, both singly and in relation to each other to provide a novel perspective on neuroinformatics, integrating the development of databases for encoding – separately or together – neurocomputational models and empirical data that serve systems and cognitive neuroscience.


Linking models and experiments Models, neurocomputational Action and the brain Language and the brain Mirror systems Multi-level data Multi-level models Databasing empirical data Federation of databases Collaboratory workspaces 


Acknowledgement, Discussion Groups and Workshop Participants

The present paper is based on discussions held on Wednesday July 27, as part of the Workshop on “Action, Language and Neuroinformatics” held on July 25–27, 2011, in Los Angeles under the aegis of the USC Brain Project of the University of Southern California, and organized by Michael A. Arbib. The Workshop was supported in part by the National Science Foundation under Grant No. 0924674.

There were six discussion groups, three (1a,b,c) meeting in parallel in the morning and three (2a,b,c) in the afternoon. The participants of the Workshop were divided into three groups, one each on Action, Language, and Neuroinformatics. The discussion groups were then organized as follows. The name of the rapporteur for each session is marked in Bold. The present paper is based on the integration of their six reports.

1a. Half the Action group + half the Neuroinformatics group: assessing the model-data integration and neuroinformatics needs of the Action group: Bonaiuto, Oztop, Demiris, Vanduffel, Arbib, Marques, Bohland.

1b. Half the Neurolinguistics group + the other half of the Neuroinformatics group: assessing the model-data integration and neuroinformatics needs of the Neurolinguistics group: Bornkessel-Schlesewsky, Small, MacWhinney, Miikkulainen, Nielsen, Fox, Barrès, Schuler.

1c. The other half of the Action group + the other half of the Neurolinguistics group: Defining shared modeling challenges and the development of a shared conceptual framework. Kemmerer, Aziz-Zadeh, Cartmill, Gasser, Grosvald, Wood, Kempen, Lee, Schilling.

2a. Action group: What are the key data and/or conceptual issues ripe for modeling; what are the key lines of modeling that hold most promise to address these data/issues? Oztop, Demiris, Vanduffel, Cartmill, Arbib, Aziz-Zadeh, Gasser, Schilling, Wood.

2b. Neurolinguistics group: What are the key data and/or conceptual issues ripe for modeling; what are the key lines of modeling that hold most promise to address these data/issues? MacWhinney, Kempen, Grosvald, Small, Bornkessel-Schlesewsky, Miikkulainen. Kemmerer, Lee, Barres

2c. Neuroinformatics group: What tools are ripe for sharing, or should be ripened? What are promising lines for federation? Nielsen, Marques, Bohland, Bonaiuto, Bota, Fox, Schuler.

Brief biosketches of the participants, access to selected papers, and abstracts of their talks may be found at the Workshop Website:


  1. Aihara, T., Takeda, Y., Takeda, K., Yasuda, W., Sato, T., et al. (2012). Cortical current source estimation from electroencephalography in combination with near-infrared spectroscopy as a hierarchical prior. NeuroImage, 59, 4006–4021.PubMedCrossRefGoogle Scholar
  2. Alday, P., Schlesewsky, M., Bornkessel-Schlesewsky, I. (2013). Towards a computational model of actor-based language comprehension. Neuroinformatics. doi: 10.1007/s12021-013-9198-x.
  3. Arbib, M. A. (1981). Perceptual structures and distributed motor control. In V. B. Brooks (Ed.), Handbook of physiology — the nervous system II. Motor control (pp. 1449–1480). Bethesda: American Physiological Society.Google Scholar
  4. Arbib, M. A. (2012). How the brain got language: the mirror system hypothesis. New York & Oxford: Oxford University Press.Google Scholar
  5. Arbib, M. A., & Bota, M. (2003). Language evolution: neural homologies and neuroinformatics. Neural Networks, 16, 1237–1260.PubMedCrossRefGoogle Scholar
  6. Arbib, M. A., Billard, A. G., Iacoboni, M., & Oztop, E. (2000). Synthetic brain imaging: grasping, mirror neurons and imitation. Neural Networks, 13, 975–997.PubMedCrossRefGoogle Scholar
  7. Arbib, M. A., Ghanesh, V., Gasser, B. (2014a). Dyadic brain modeling, ontogenetic ritualization of gesture in apes, and the contributions of primate mirror neuron systems. Philosophical Transactions of the Royal Society B, to appear.Google Scholar
  8. Arbib, M. A., Plangprasopchok, A., Bonaiuto, J. J., Schuler R. E. (2014b). A Neuroinformatics of brain modeling and its implementation in the Brain Operation Database BODB. Neuroinformatics. doi: 10.1007/s12021-013-9209-y.
  9. Ascoli, G. A. (2006). The ups and downs of neuroscience shares. Neuroinformatics, 4, 213–216. doi: 10.1385/NI:4:3:213.PubMedCrossRefGoogle Scholar
  10. Aziz-Zadeh, L., Sheng, T., Liew, S.-L., Damasio, H. (2011). Understanding otherness: the neural bases of action comprehension and pain empathy in a congenital amputee. Cerebral Cortex, 4, 811–819.Google Scholar
  11. Bakker, R., Potjans, T. C., & Diesmann, M. (2011). Macaque structural connectivity revisited: CoCoMac 2.0. BMC Neuroscience, 12(supplement 1), 72.CrossRefGoogle Scholar
  12. Bandrowski, A., Gupta, A., Gupta, A., Larson, S., Martone, M. (2012). Exploring mammalian brain connectivity using NeuroLex. Neuroinformatics 2012 Abstracts:
  13. Barrès, V., Lee, J. (2013). Template construction grammar: from visual scene description to language comprehension and agrammatism. Neuroinformatics. doi: 10.1007/s12021-013-9197-y.
  14. Barrès, V., Simons, A., & Arbib, M. A. (2013). Synthetic event-related potentials: a computational bridge between neurolinguistic models and experiments. Neural Networks, 37, 66–92.PubMedCrossRefGoogle Scholar
  15. Bohland, J. W., Bokil, H., Allen, C. B., & Mitra, P. P. (2009a). The brain atlas concordance problem: quantitative comparison of anatomical parcellations. PloS One, 4, e7200.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Bohland, J. W., Bullock, D., & Guenther, F. H. (2009b). Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience, 22, 1504–1529.CrossRefGoogle Scholar
  17. Bohland, J., Myers, E., Kim, E. (2013). An informatics approach to integrating genetic and neurological data in speech and language neuroscience. Neuroinformatics. doi: 10.1007/s12021-013-9201-6.
  18. Bonaiuto, J. J., & Arbib, M. A. (2010). Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biological Cybernetics, 102, 341–359.PubMedCrossRefGoogle Scholar
  19. Bonaiuto, J. J., & Arbib, M. A. (2014). Modeling the BOLD correlates of competitive neural dynamics. Neural Networks, 49, 1–10.PubMedCrossRefGoogle Scholar
  20. Bonaiuto, J. B., Rosta, E., & Arbib, M. A. (2007). Extending the mirror neuron system model, I : audible actions and invisible grasps. Biological Cybernetics, 96, 9–38.PubMedCrossRefGoogle Scholar
  21. Bornkessel, I., & Schlesewsky, M. (2006). The extended argument dependency model: a neurocognitive approach to sentence comprehension across languages. Psychological Review, 113, 787–821.PubMedCrossRefGoogle Scholar
  22. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2009). The role of prominence information in the real-time comprehension of transitive constructions: a cross-linguistic approach. Language and Linguistics Compass, 3, 19–58.CrossRefGoogle Scholar
  23. Bornkessel-Schlesewsky, I., Kretzschmar, F., Tune, S., Wang, L., Gençc, S., et al. (2011). Think globally: cross-linguistic variation in electrophysiological activity during sentence comprehension. Brain and Language, 117, 133–152.PubMedCrossRefGoogle Scholar
  24. Bota, M., & Arbib, M. A. (2004). Integrating databases and expert systems for the analysis of brain structures: connections, similarities, and homologies. Neuroinformatics, 2, 19–58.PubMedCrossRefGoogle Scholar
  25. Bota, M., & Swanson, L. W. (2008). BAMS neuroanatomical ontology: design and implementation. Front Neuroinformatics, 2, 2. doi: 10.3389/neuro.11.002.2008.PubMedCentralCrossRefGoogle Scholar
  26. Ciccarese, P., Wu, E., Wong, G., Ocana, M., Kinoshita, J., et al. (2008). The SWAN biomedical discourse ontology. Journal of Biomedical Informatics, 41, 739–751.PubMedCrossRefGoogle Scholar
  27. Clifton, C., & Staub, A. (2008). Parallelism and competition in syntactic ambiguity resolution. Language and Linguistics Compass, 2, 234–250.Google Scholar
  28. Craik, K. J. W. (1943). The nature of explanation. Cambridge: Cambridge University Press.Google Scholar
  29. De Schutter, E. (2008). Why Are computational neuroscience and systems biology so separate? PLoS Computational Biology, 4, e1000078.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Debener, S., Ullsperger, M., Siegel, M., Fiehler, K., Cramon, D. Y., & Engel, A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. Journal of Neuroscience, 25, 11730–11737.PubMedCrossRefGoogle Scholar
  31. Debener, S., Ullsperger, M., Siegel, M., & Engel, A. K. (2006). Single-trial EEG–fMRI reveals the dynamics of cognitive function. Trends in Cognitive Sciences, 10, 558–563.PubMedCrossRefGoogle Scholar
  32. Demiris, Y., Aziz-Zadeh, L. A., Bonaiuto, J. J. (2013). Information processing in the mirror neuron system in primates and machines. Neuroinformatics. doi: 10.1007/s12021-013-9200-7.
  33. Denys, K., Vanduffel, W., Fize, D., Nelissen, K., Peuskens, H., et al. (2004). The processing of visual shape in the cerebral cortex of human and nonhuman primates: A functional magnetic resonance imaging study. Journal of Neuroscience, 24, 2551–2565.PubMedCrossRefGoogle Scholar
  34. Derrfuss, J., & Mar, R. A. (2009). Lost in localization: the need for a universal coordinate database. Neurolmage, 48, 1–7.CrossRefGoogle Scholar
  35. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Experimental Brain Research, 91, 176–180.PubMedCrossRefGoogle Scholar
  36. Ferreira, F., Ferraro, V., & Bailey, K. G. D. (2002). Good-enough representations in language comprehension. Current Directions in Psychological Science, 11, 11–15.CrossRefGoogle Scholar
  37. Fillmore, C. J. (1976). Frame semantics and the nature of language. Annals of the New York Academy of Sciences, 280, 20–32.CrossRefGoogle Scholar
  38. Fisher, S. (2010). Genetic susceptibility to stuttering. New England Journal of Medicine, 362, 750–752.PubMedCrossRefGoogle Scholar
  39. Fisher, S. E., & Ridley, M. (2013). Culture, genes, and the human revolution. Science, 340, 929–930.PubMedCrossRefGoogle Scholar
  40. Fisher, S., & Scharff, C. (2009). FOXP2 as a molecular window into speech and language. Trends in Genetics, 25.Google Scholar
  41. Fox, P. T., Laird, A. R., Fox, S. P., Fox, P. M., Uecker, A. M., et al. (2005). BrainMap taxonomy of experimental design: description and evaluation. Human Brain Mapping, 25, 185–198.PubMedCrossRefGoogle Scholar
  42. Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6, 78–84.PubMedCrossRefGoogle Scholar
  43. Frishkoff, G. A., Sydes, J., Mueller, K., Frank, R., Curran, T, et al. (2011). Minimal Information for Neural Electromagnetic Ontologies (MINEMO): a standards-compliant method for analysis and integration of event-related potentials (ERP) data. Standards in Genomic Sciences, 5(2): 211–223.Google Scholar
  44. Friston, K. J. (2002). Beyond phrenology: what can neuroimaging tell us about distributed circuitry? Annual Review of Neuroscience, 25, 221–250.PubMedCrossRefGoogle Scholar
  45. Friston, K. J., & Dolan, R. J. (2010). Computational and dynamic models in neuroimaging. NeuroImage, 52, 752–765.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.PubMedCrossRefGoogle Scholar
  47. Friston, K. J., Ashburner, J., Kiebel, S. J., Nichols, T. E., Penny, W. D. (Eds.) (2007). Statistical parametric mapping: the analysis of functional brain images. London: Academic Press.Google Scholar
  48. Fujii, N., Hihara, S., & Iriki, A. (2008). Social cognition in premotor and parietal cortex. Social Neuroscience, 3, 250–260.PubMedCrossRefGoogle Scholar
  49. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain, 119, 593–609.PubMedCrossRefGoogle Scholar
  50. Gardner, D., Akil, H., Ascoli, G., Bowden, D., Bug, W., et al. (2008). The neuroscience information framework: a data and knowledge environment for neuroscience. Neuroinformatics, 6, 149–160.PubMedCentralPubMedCrossRefGoogle Scholar
  51. Gasser, B., Cartmill, E., & Arbib, M. A. (2013). Ontogenetic ritualization of primate gesture as a case study in dyadic brain modeling. Neuroinformatics. doi: 10.1007/s12021-013-9182-5.PubMedGoogle Scholar
  52. Gibson, E. (1998). Linguistic complexity: locality of syntactic dependencies. Cognition, 68, 1–76.PubMedCrossRefGoogle Scholar
  53. Gleeson, P., Crook, S., Cannon, R. C., Hines, M. L., Billings, G. O., et al. (2010). NeuroML: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Computational Biology, 6, e1000815.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Goddard, N. H., Ml, H., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: model description methods for collaborative modelling in neuroscience. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 356, 1209–1228.PubMedCrossRefGoogle Scholar
  55. Hagoort, P. (2005). On Broca, brain, and binding: a new framework. Trends in Cognitive Sciences, 9, 416–423.PubMedCrossRefGoogle Scholar
  56. Hawkins, J. A. (1999). Processing complexity and filler-gap dependencies across grammars. Language & Cognitive Processes, 75, 244–285.Google Scholar
  57. Hickok, G. (2009). The functional neuroanatomy of language. Physics of Life Reviews, 6, 121–143.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Horwitz, B., Tagamets, M. A., & McIntosh, A. R. (1999a). Neural modeling, functional brain imaging, and cognition. Trends in Cognitive Sciences, 3, 91–98.PubMedCrossRefGoogle Scholar
  59. Horwitz, B., Tagamets, M. A., & McIntosh, A. R. (1999b). Neural modeling, functional brain imaging, and cognition. TRENDS in Cognitive Sciences, 3, 91–98.PubMedCrossRefGoogle Scholar
  60. Jones, A. R., Overly, C. C., & Sunkin, S. M. (2009). The allen brain atlas: 5 years and beyond. Nature Reviews. Neuroscience, 10, 821–828.PubMedCrossRefGoogle Scholar
  61. Kempen, G. (2013). Prolegomena to a neurocomputational architecture for human grammatical encoding and decoding. Neuroinformatics. doi: 10.1007/s12021-013-9191-4.
  62. Kempen, G., & Hoenkamp, E. (1987). An incremental procedural grammar for sentence formulation. Cognitive Science, 11, 201–258.CrossRefGoogle Scholar
  63. Kennedy, D. N. (2006). Where’s the beef? Missing data in the information age. Neuroinformatics, 4, 271–273. doi: 10.1385/NI:4:4:271.PubMedCrossRefGoogle Scholar
  64. Kennedy, D. N. (2010). Making connections in the connectome era. Neuroinformatics, 8, 61–62.Google Scholar
  65. Kennedy, D. N. (2012). The benefits of preparing data for sharing even when you don’t. Neuroinformatics, 10, 223–224.PubMedCrossRefGoogle Scholar
  66. Kennedy, D. N., Ascoli, G. A., & De Schutter, E. (2011). Next steps in data publishing. Neuroinformatics, 9, 317–320. doi: 10.1007/s12021-011-9131-0.CrossRefGoogle Scholar
  67. Kotter, R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics, 2, 127–144.PubMedCrossRefGoogle Scholar
  68. Kouzes, R. T., Myers, J. D., & Wulf, W. A. (1996). Collaboratories: doing science on the Internet. Computer, 29, 40–46.CrossRefGoogle Scholar
  69. Laird, A. R., Lancaster, J., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3, 65–77.PubMedCrossRefGoogle Scholar
  70. Laird, A. R., Eickhoff, S. B., Kurth, F., Fox, P. M., Uecker, A. M., et al. (2009). ALE meta-analysis workflows Via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinformatics, 3, 23. doi: 10.3389/neuro.11.023.2009.PubMedCentralCrossRefGoogle Scholar
  71. Laird, A. R., Eickhoff, S. B., Fox, P. M., Uecker, A. M., Ray, K. L., et al. (2011). The BrainMap strategy for standardization, sharing, and meta-analysis of neuroimaging data. BMC Research Notes, 4, 349.PubMedCentralPubMedCrossRefGoogle Scholar
  72. Lewis, R. L., Vasishth, S., & Van Dyke, J. A. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10, 447–454.PubMedCentralPubMedCrossRefGoogle Scholar
  73. Li, P., Zhao, X., & MacWhinney, B. (2007). Dynamic self-organization and early lexical development in children. Cognitive Science, 31, 581–612.PubMedCrossRefGoogle Scholar
  74. Lohrey, J. M., Killeen, N. E. B., & Egan, G. F. (2009). An integrated object model and method framework for subject-centric e-Research applications. Frontiers in Neuroinformatics, 3, 19.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Luo, X.-Z., Kennedy, D., & Cohen, Z. (2009). Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) resource announcement. Neuroinformatics, 7, 55–56.PubMedCrossRefGoogle Scholar
  76. MacWhinney, B. (1987). The competition model. In B. MacWhinney (Ed.), Mechanisms of language acquisition (pp. 249–308). Hillsdale: Lawrence Erlbaum.Google Scholar
  77. MacWhinney, B. (2000). The childes project: tools for analyzing talk (3rd ed.). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  78. MacWhinney, B. (2008). How mental models encode embodied linguistic perspectives. In R. Klatzky, B. MacWhinney, & M. Behrmann (Eds.), Embodiment, ego-space, and action (pp. 369–410). Mahwah: Lawrence Erlbaum.Google Scholar
  79. MacWhinney. (2011). The logic of the unified model. In S. Gass & A. Mackey (Eds.), Handbook of second language acquisition. New York: Routledge.Google Scholar
  80. MacWhinney, B., Fromm, D., Forbes, M., & Holland, A. (2011). AphasiaBank: methods for studying discourse. Aphasiology, 25, 1286–1307.PubMedCentralPubMedCrossRefGoogle Scholar
  81. Mantini, D., Hasson, U., Betti, V., Perrucci, M. G., Romani, G. L., et al. (2012). Interspecies activity correlations reveal functional correspondence between monkey and human brain areas. Nature Methods, 9, 277–282.PubMedCentralPubMedCrossRefGoogle Scholar
  82. Marenco, L., Ascoli, G. A., Martone, M. E., Shepherd, G. M., & Miller, P. L. (2008). The NIF LinkOut broker: a web resource to facilitate federated data integration using NCBI identifiers. Neuroinformatics, 6, 219–227.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Marenco, L., Wang, R., Shepherd, G. M., & Miller, P. (2010). The NIF DISCO framework: facilitating automated integration of neuroscience content on the web. Neuroinformatics, 8, 101–112.PubMedCrossRefGoogle Scholar
  84. Matsumoto, R., Nair, D. R., Bingaman, W., Ikeda, A., Shibasaki, H., & Lüders, H. O. (2005). Interareal connectivity in the human language system: a cortico-cortical evoked potential study. International Congress Series, 1278, 397–400.CrossRefGoogle Scholar
  85. McElree, B., Foraker, S., & Dyer, L. (2003). Memory structures that subserve sentence comprehension. Journal of Memory and Language, 48, 67–91.CrossRefGoogle Scholar
  86. McIntosh, A. R. (2012). Tracing the route to path analysis in neuroimaging. NeuroImage, 62, 887–890.PubMedCrossRefGoogle Scholar
  87. Miller, G. A. (1995). WordNet: a lexical database for english. Communications of the ACM, 38, 39–41.CrossRefGoogle Scholar
  88. Nelissen, K., Luppino, G., Vanduffel, W., Rizzolatti, G., & Orban, G. A. (2005). Observing others: multiple action representation in the frontal lobe. Science, 310, 332–336.PubMedCrossRefGoogle Scholar
  89. Nielsen, F. Å. (2005). Mass meta-analysis in Talairach space. In L. K. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in neural information processing systems (17th ed., pp. 985–992). Cambridge: MIT Press.Google Scholar
  90. Nielsen, F. Å. (2013). Brede tools and federating online neuroinformatics databases. Neuroinformatics.doi: 10.1007/s12021-013-9183-4.
  91. Orban, G. A., Van Essen, D., & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Sciences, 8, 315–324.PubMedCrossRefGoogle Scholar
  92. Oztop, E., & Arbib, M. A. (2002). Schema design and implementation of the grasp-related mirror neuron system. Biological Cybernetics, 87, 116–140.PubMedCrossRefGoogle Scholar
  93. Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Brain Research. Cognitive Brain Research, 22, 129–151.PubMedCrossRefGoogle Scholar
  94. Oztop, E., Kawato, M., & Arbib, M. A. (2013). Mirror neurons: functions, mechanisms and models. Neuroscience Letters, 540, 43–55.PubMedCrossRefGoogle Scholar
  95. Palmer, M. (2009). Semlink: linking PropBank, VerbNet and FrameNet. Proceedings of the Generative Lexicon Conference. Sept. 2009, Pisa, Italy: GenLex-09: 580–90.Google Scholar
  96. Peeters, R., Simone, L., Nelissen, K., Fabbri-Destro, M., Vanduffel, W., et al. (2009). The representation of tool use in humans and monkeys: common and uniquely human features. The Journal of Neuroscience, 29, 11523–39.Google Scholar
  97. Poizner, H., Klima, E., & Bellugi, U. (1987). What the hands reveal about the brain. Cambridge: MIT Press.Google Scholar
  98. Rizzolatti, G., & Arbib, M. A. (1998). Language within our grasp. Trends in Neurosciences, 21, 188–194.PubMedCrossRefGoogle Scholar
  99. Rizzolatti, G., & Sinigaglia, C. (2008). Mirrors in the brain: how our minds share actions, emotions, and experience (Translated from the Italian by Frances Anderson). Oxford: Oxford University Press.Google Scholar
  100. Russ, T. A., Ramakrishnan, C., Hovy, E. H., Bota, M., & Burns, G. A. (2011). Knowledge engineering tools for reasoning with scientific observations and interpretations: a neural connectivity use case. BMC Bioinformatics, 12, 351.PubMedCentralPubMedCrossRefGoogle Scholar
  101. Sagotsky, J. A., Zhang, L., Wang, Z., Martin, S., & Deisboeck, T. S. (2008). Life Sciences and the web: a new era for collaboration. Molecular Systems Biology, 4.Google Scholar
  102. Santos, G. S., Nagasaka, Y., Fujii, N., & Nakahara, H. (2011). Encoding of social state information by neuronal activities in the macaque caudate nucleus. Social Neuroscience, 7, 42–58.PubMedCrossRefGoogle Scholar
  103. Sato, M. A., Yoshioka, T., Kajihara, S., Toyama, K., Goda, N., et al. (2004). Hierarchical Bayesian estimation for MEG inverse problem. NeuroImage, 23, 806–826.PubMedCrossRefGoogle Scholar
  104. Silberman, Y., Bentin, S., & Miikkulainen, R. (2007). Semantic boost on episodic associations: an empirically-based computational model. Cognitive Science, 31, 645–671.PubMedCrossRefGoogle Scholar
  105. Sobolev, A., Leonhardt, A., Rautenberg, P., Kellner, C., Herz, A., Wachtler, T. (2012). Cloud services and a data API for electrophysiology. Neuroinformatics 2012:
  106. Stein, L. (2002). Creating a bioinformatics nation. Nature, 417, 119–120.PubMedCrossRefGoogle Scholar
  107. Traxler, M. J., & Gernsbacher, M. A. (Eds.). (2006). Handbook of psycholinguistics. London: Academic.Google Scholar
  108. Turner, J., & Laird, A. R. (2012). The cognitive paradigm ontology: design and application. Neuroinformatics, 10, 57–66.PubMedCentralPubMedCrossRefGoogle Scholar
  109. Ullman, M. T. (2004). Contributions of memory circuits to language: the declarative/procedural model. Cognition, 92, 231–270.PubMedCrossRefGoogle Scholar
  110. Vanduffel, W., Fize, D., Peuskens, H., Denys, K., Sunaert, S., et al. (2002). Extracting 3D from motion: differences in human and monkey intraparietal cortex. Science, 298, 413–415.PubMedCrossRefGoogle Scholar
  111. Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: a computational model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105–143.PubMedCrossRefGoogle Scholar
  112. Vosse, T., & Kempen, G. (2009). The unification space implemented as a localist neural net: predictions and error-tolerance in a constraint-based parser. Cognitive Neurodynamics, 3, 331–346.PubMedCentralPubMedCrossRefGoogle Scholar
  113. Waldrop, M. M. (2008). Science 2.0. Scientific American, 298, 68–73.PubMedCrossRefGoogle Scholar
  114. Wolpert, D. M., & Kawato, M. (1998). Multiple paired forward and inverse models for motor control. Neural Networks, 11, 1317–1329.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Michael A. Arbib
    • 1
    Email author
  • James J. Bonaiuto
    • 2
  • Ina Bornkessel-Schlesewsky
    • 3
  • David Kemmerer
    • 4
  • Brian MacWhinney
    • 5
  • Finn Årup Nielsen
    • 6
  • Erhan Oztop
    • 7
  1. 1.Computer Science and Neuroscience Graduate ProgramUniversity of Southern CaliforniaLos AngelesUSA
  2. 2.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA
  3. 3.NeurolinguisticsUniversity of MarburgMarburgGermany
  4. 4.Speech, Language, & Hearing Sciences and Psychological SciencesPurdue UniversityWest LafayetteUSA
  5. 5.Psychology, Computational Linguistics, and Modern LanguagesCarnegie Mellon UniversityPittsburghUSA
  6. 6.Technical University of DenmarkCopenhagenDenmark
  7. 7.Ozyegin UniversityIstanbulTurkey

Personalised recommendations