Neuroinformatics

, Volume 12, Issue 1, pp 63–91 | Cite as

Information Processing in the Mirror Neuron System in Primates and Machines

Original Article

Abstract

The mirror neuron system in primates matches observations of actions with the motor representations used for their execution, and is a topic of intense research and debate in biological and computational disciplines. In robotics, models of this system have been used for enabling robots to imitate and learn how to perform tasks from human demonstrations. Yet, existing computational and robotic models of these systems are found in multiple levels of description, and although some models offer plausible explanations and testable predictions, the difference in the granularity of the experimental setups, methodologies, computational structures and selected modeled data make principled meta-analyses, common in other fields, difficult. In this paper, we adopt an interdisciplinary approach, using the BODB integrated environment in order to bring together several different but complementary computational models, by functionally decomposing them into brain operating principles (BOPs) which each capture a limited subset of the model’s functionality. We then explore links from these BOPs to neuroimaging and neurophysiological data in order to pinpoint complementary and conflicting explanations and compare predictions against selected sets of neurobiological data. The results of this comparison are used to interpret mirror system neuroimaging results in terms of neural network activity, evaluate the biological plausibility of mirror system models, and suggest new experiments that can shed light on the neural basis of mirror systems.

Keywords

Mirror system BODB Computational modeling Robotics Imitation 

Notes

Acknowledgements

YD’s contributions were partially supported through EU FP7 grants EFAA (grant FP7-ICT-270490) and ALIZ-E (grant FP7-ICT-248116).

References

  1. Arbib, M., Bonaiuto, J. (2013). The Neuroinformatics of Brain Modeling, Part II: The Brain Operation Database, BODB. Neuroinformatics in press.Google Scholar
  2. Arbib, M., Plangprasopchok, A., Bonaiuto, J., Schuler, R. (2013). The neuroinformatics of brain modeling, part I: from empirical data to brain operating principles. Neuroinformatics in press.Google Scholar
  3. Argall, B. D., Chernova, S., Veloso, M., & Browning, B. (2009). A survey of robot learning from demonstration. Robotics and Autonomous Systems, 57, 469–483.CrossRefGoogle Scholar
  4. Aziz-Zadeh, L., Sheng, T., Liew, S. L., & Damasio, H. (2012). Understanding otherness: the neural bases of action comprehension and pain empathy in a congenital amputee. Cerebral Cortex, 22, 811–819.PubMedCrossRefGoogle Scholar
  5. Bonaiuto, J., & Arbib, M. (2010). Extending the mirror neuron system model, II: what did I just do? A new role for mirror neurons. Biological Cybernetics, 102, 1–19.CrossRefGoogle Scholar
  6. Bonaiuto, J., Rosta, E., & Arbib, M. (2007). Extending the mirror neuron system model, I—audible actions and invisible grasps. Biological Cybernetics, 96, 9–38.PubMedCrossRefGoogle Scholar
  7. Bota, M., Arbib, M. A. (2004). Integrating databases and expert systems for the analysis of brain structures: connections, similarities, and homologies. In Neuroinformatics, (vol. 2, pp 19–58). United States.Google Scholar
  8. Byrne, R. W., & Russon, A. E. (1998). Learning by imitation: a hierarchical approach. Behavioral and brain sciences, 21(5), 667–684.Google Scholar
  9. Caggiano, V., Fogassi, L., Rizzolatti, G., Thier, P., & Casile, A. (2009). Mirror neurons differentially encode the peripersonal and extrapersonal space of. Science, 324, 403–406.PubMedCrossRefGoogle Scholar
  10. Caggiano, V., Fogassi, L., Rizzolatti, G., Pomper, J. K., Thier, P., Giese, M. A., & Casile, A. (2011). View-based encoding of actions in mirror neurons of area f5 in macaque premotor. Current Biology, 21, 144–148.PubMedCrossRefGoogle Scholar
  11. Caggiano, V., Fogassi, L., Rizzolatti, G., Casile, A., Giese, M. A., & Thier, P. (2012). Mirror neurons encode the subjective value of an observed action. Proceedings of the National Academy of Sciences of the United States of America, 109, 11848–11853.PubMedCentralPubMedCrossRefGoogle Scholar
  12. Castiello, U., & Jeannerod, M. (1991). Measuring time to awareness. Neuroreport, 2(12), 797–800.Google Scholar
  13. Cavada, C., & Goldman-Rakic, P. S. (1989). Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe. Journal of Comparative Neurology, 287(4), 422–445.Google Scholar
  14. Colby, C. L., Duhamel, J. R., & Goldberg, M. E. (1993). Ventral intraparietal area of the macaque: anatomic location and visual response properties. Journal of neurophysiology, 69(3), 902–914.Google Scholar
  15. Cross, E. S., Hamilton, A., & Grafton, S. T. (2006). Building a motor simulation de novo: observation of dance by dancers. NeuroImage, 31, 1257–1267.PubMedCentralPubMedCrossRefGoogle Scholar
  16. Demiris, J., Hayes, G. (1999). Active and Passive Routes to Imitation, Proceedings of the AISB’99 Symposium on Imitation in Animals and Artifacts. K. Dautenhahn and C. Nehaniv (eds.), (pp. 81–87), Edinburgh, UK, April 6–9, 1999.Google Scholar
  17. Demiris, J., Hayes, G. (2002). Imitation as a dual-route process featuring predictive and learning components; a biologically plausible computational model. In Imitation in animals and artifacts. MIT Press.Google Scholar
  18. Demiris, Y., & Johnson, M. (2003). Distributed, predictive perception of actions: a biologically inspired robotics architecture for imitation and learning. Connection Science, 15, 231–243.CrossRefGoogle Scholar
  19. Demiris, Y., & Khadhouri, B. (2006). Hierarchical attentive multiple models for execution and recognition of actions. Robotics and Autonomous Systems, 54, 361–369.CrossRefGoogle Scholar
  20. Demiris, Y., & Simmons, G. (2006). Perceiving the unusual: temporal properties of hierarchical motor representations for action perception. Neural Networks, 19, 272–284.PubMedCrossRefGoogle Scholar
  21. Demiris, J., Rougeaux, S., Hayes, G., Berthouze, L., Kuniyoshi, Y. (1997). Deferred imitation of human head movements by an active stereo vision head. IEEE. pp 88–93.Google Scholar
  22. di Pellegrino, G., Fadiga, L., Fogassi, L., Gallese, V., & Rizzolatti, G. (1992). Understanding motor events: a neurophysiological study. Exp Brain Res, 91(1), 176–80.Google Scholar
  23. Erlhagen, W., Mukovskiy, A., & Bicho, E. (2006). A dynamic model for action understanding and goal-directed imitation. Brain Research, 1083, 174–188.PubMedCrossRefGoogle Scholar
  24. Fadiga, L., Craighero, L., & Ausilio. (2009). Broca’s area in language, action and music. Annals of the New York Academy of Sciences, 1169, 448–458.PubMedCrossRefGoogle Scholar
  25. Fagg, A. H., & Arbib, M. A. (1998). Modeling parietal-premotor interactions in primate control of grasping. Neural Networks, 11, 1277–1303.PubMedCrossRefGoogle Scholar
  26. Ferrari, P. F., Rozzi, S., & Fogassi, L. (2005). Mirror neurons responding to observation of actions made with tools in monkey ventral premotor cortex. Journal of Cognitive Neuroscience, 17, 212–226.PubMedCrossRefGoogle Scholar
  27. Fleischer, F., Christensen, A., Caggiano, V., Thier, P., & Giese, M. A. (2012). Neural theory for the perception of causal actions. Psychological Research, 76, 476–493.PubMedCrossRefGoogle Scholar
  28. Gallese, V., Fadiga, L., Fogassi, L., & Rizzolatti, G. (1996). Action recognition in the premotor cortex. Brain: A Journal of Neurology, 119(Pt 2), 593–609.CrossRefGoogle Scholar
  29. Gallese, V., Keysers, C., & Rizzolatti, G. (2004). A unifying view of the basis of social cognition. Trends in Cognitive Science, 8, 396–403.CrossRefGoogle Scholar
  30. Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: a study of visuo-imitative apraxia. Neuropsychologia, 35, 333–341.PubMedCrossRefGoogle Scholar
  31. Goodale, M. A., & Milner, A. D. (1992). Separate visual pathways for perception and action. Trends in neurosciences, 15(1), 20–25.Google Scholar
  32. Haruno, M., Wolpert, D. M., & Kawato, M. (2001). MOSAIC model for sensorimotor learning and control. Neural Computation, 13, 2201–2220.PubMedCrossRefGoogle Scholar
  33. Heiser, M., Iacoboni, M., Maeda, F., Marcus, J., & Mazziotta, J. C. (2003). The essential role of Broca’s area in imitation. European Journal of Neuroscience, 17, 1123–1128.PubMedCrossRefGoogle Scholar
  34. Hourdakis, E., Savaki, H. E., & Trahanias, P. (2011). Computational modeling of cortical pathways involved in action execution and action observation. Neurocomputing, 74, 1135–1155.CrossRefGoogle Scholar
  35. Iacoboni, M. (2005). Neural mechanisms of imitation. Curr Opin Neurobiol.Google Scholar
  36. Johnson, M., Demiris, Y. (2005). Perceptual Perspective Taking and Action Recognition. International Journal of Advanced Robotic Systems, 2:4, pp 301–308.Google Scholar
  37. Keysers, C., & Perrett, D. I. (2004). Demystifying social cognition: a Hebbian perspective. Trends in Cognitive Science, 8, 501–507.CrossRefGoogle Scholar
  38. Kotter, R. (2004). Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac database. Neuroinformatics, 2, 127–144.PubMedCrossRefGoogle Scholar
  39. Kraskov, A., Dancause, N., Quallo, M. M., Shepherd, S., & Lemon, R. N. (2009). Corticospinal neurons in macaque ventral premotor cortex with mirror properties: a potential mechanism for action suppression? Neuron, 64, 922–930.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Lee, K., Kim, T.-K., Demiris, Y. (2012). Learning reusable task components using hierarchical activity grammars with uncertainties. In: Robotics and Automation (ICRA), 2012 I.E. International Conference on, pp 1994–1999.Google Scholar
  41. Lyon, R. (1982). A computational model of filtering, detection, and compression in the cochlea. In IEEE International Conference on Acoustics, Speech, and Signal Processing. 7:1282–1285.Google Scholar
  42. Murata, A., Fadiga, L., Fogassi, L., Gallese, V., Raos, V., & Rizzolatti, G. (1997). Object representation in the ventral premotor cortex (area F5) of the monkey. Journal of neurophysiology, 78(4), 2226–2230.Google Scholar
  43. Oztop, E., & Arbib, M. A. (2002). Schema design and implementation of the grasp-related mirror neuron system. Biological Cybernetics, 87, 116–140.PubMedCrossRefGoogle Scholar
  44. Oztop, E., Wolpert, D., & Kawato, M. (2005). Mental state inference using visual control parameters. Brain Research. Cognitive Brain Research, 22, 129–151.PubMedCrossRefGoogle Scholar
  45. Oztop, E., Kawato, M., & Arbib, M. (2006). Mirror neurons and imitation: a computationally guided review. Neural Networks: The Official Journal of the International Neural Network Society, 19, 254–271.CrossRefGoogle Scholar
  46. Oztop, E., Kawato, M., Arbib, M. A. (2012). Mirror Neurons: Functions, Mechanisms and Models. Neuroscience Letters.Google Scholar
  47. Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J., Chitty, A. J., Hietanen, J. K., & Ortega, J. E. (1989). Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology, 146, 87–113.PubMedGoogle Scholar
  48. Rizzolatti, G., & Craighero, L. (2004). The mirror-neuron system. Annual Review of Neuroscience, 27, 169–192.PubMedCrossRefGoogle Scholar
  49. Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Brain Res Cogn Brain Res, 3(2), 131–41.Google Scholar
  50. Sakata, H., Taira, M., Kusunoki, M., Murata, A., & Tanaka, Y. (1997). The TINS Lecture The parietal association cortex in depth perception and visual control of hand action. Trends in neurosciences, 20(8), 350–357.Google Scholar
  51. Sauser, E. L., & Billard, A. G. (2006). Parallel and distributed neural models of the ideomotor principle: an investigation of imitative cortical pathways. Neural Networks, 19, 285–298.PubMedCrossRefGoogle Scholar
  52. Schaal, S. (1999). Is imitation learning the route to humanoid robots? Trends in Cognitive Science, 3, 233–242.CrossRefGoogle Scholar
  53. Seltzer, B., & Pandya, D. N. (1989). Frontal lobe connections of the superior temporal sulcus in the rhesus monkey. Journal of Comparative Neurology, 281(1), 97–113.Google Scholar
  54. Spunt, R. P., & Lieberman, M. D. (2012). An integrative model of the neural systems supporting the comprehension of observed emotional behavior. NeuroImage, 59, 3050–3059.PubMedCrossRefGoogle Scholar
  55. Spunt, R. P., Satpute, A. B., & Lieberman, M. D. (2011). Identifying the what, why, and how of an observed action: an fMRI study of mentalizing and mechanizing during action observation. Journal of Cognitive Neuroscience, 23, 63–74.PubMedCrossRefGoogle Scholar
  56. Umilta, M. A., Kohler, E., Gallese, V., Fogassi, L., Fadiga, L., Keysers, C., & Rizzolatti, G. (2001). I know what you are doing: A neurophysiological study. Neuron, 31(1), 155–165.Google Scholar
  57. Ungerleider, L. G., & Mishkin, M. (1982). Analysis of Visual Behavior. In D. J. Ingle, M. A. Goodale, R. J. W. Mansfield (Eds.).Google Scholar
  58. Van Overwalle, F., & Baetens, K. (2009). Understanding others’ actions and goals by mirror and mentalizing systems: a meta-analysis. NeuroImage, 48, 564–584.PubMedCrossRefGoogle Scholar
  59. Werbos, P. J. (1990). Backpropagation through time: what it does and how to do it. Proceedings of the IEEE, 78, 1550–1560.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Yiannis Demiris
    • 1
  • Lisa Aziz-Zadeh
    • 2
  • James Bonaiuto
    • 3
  1. 1.Department of Electrical and Electronic EngineeringImperial College LondonLondonUK
  2. 2.Brain and Creativity Institute and Division of Occupational Science and Occupational TherapyUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.Division of BiologyCalifornia Institute of TechnologyPasadenaUSA

Personalised recommendations