, Volume 12, Issue 1, pp 143–179 | Cite as

Towards a Computational Model of Actor-Based Language Comprehension

  • Phillip M. Alday
  • Matthias Schlesewsky
  • Ina Bornkessel-Schlesewsky
Original Article


Neurophysiological data from a range of typologically diverse languages provide evidence for a cross-linguistically valid, actor-based strategy of understanding sentence-level meaning. This strategy seeks to identify the participant primarily responsible for the state of affairs (the actor) as quickly and unambiguously as possible, thus resulting in competition for the actor role when there are multiple candidates. Due to its applicability across languages with vastly different characteristics, we have proposed that the actor strategy may derive from more basic cognitive or neurobiological organizational principles, though it is also shaped by distributional properties of the linguistic input (e.g. the morphosyntactic coding strategies for actors in a given language). Here, we describe an initial computational model of the actor strategy and how it interacts with language-specific properties. Specifically, we contrast two distance metrics derived from the output of the computational model (one weighted and one unweighted) as potential measures of the degree of competition for actorhood by testing how well they predict modulations of electrophysiological activity engendered by language processing. To this end, we present an EEG study on word order processing in German and use linear mixed-effects models to assess the effect of the various distance metrics. Our results show that a weighted metric, which takes into account the weighting of an actor-identifying feature in the language under consideration outperforms an unweighted distance measure. We conclude that actor competition effects cannot be reduced to feature overlap between multiple sentence participants and thereby to the notion of similarity-based interference, which is prominent in current memory-based models of language processing. Finally, we argue that, in addition to illuminating the underlying neurocognitive mechanisms of actor competition, the present model can form the basis for a more comprehensive, neurobiologically plausible computational model of constructing sentence-level meaning.


Computational model Language processing Emergence Ambiguity resolution Actor identification 



We would like to thank Rick Lewis and Joakim Nivre for valuable discussions and suggestions related to the development of the computational model. We would also like to thank Isabel Plauth for the data acquisition.


  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716–723. doi:10.1109/TAC.1974.1100705.CrossRefGoogle Scholar
  2. Arbib, M., Bonaiuto, J., Bornkessel-Schlesewsky, I., Kemmerer, D., MacWhinney, B., Nielsen, F., Oztop, E. (this issue). Action and language mechanisms in the brain: data, models and neuroinformatics. Neuroinformatics.Google Scholar
  3. Baayen, R., Davidson, D., Bates, D. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language, 59, 390–412.CrossRefGoogle Scholar
  4. Barr, D. J., Levy, R., Scheepers, C., Tily, H. J. (2013). Random effects structure for confirmatory hypothesis testing: keep it maximal. Journal of Memory and Language, 68, 255–278.CrossRefGoogle Scholar
  5. Basten, U., Biele, G., Heekeren, H., Fiebach, C. (2010). How the brain integrates costs and benefits during decision making. Proceedings of the National Academy of Sciences, 107(50), 21,767–21,772.CrossRefGoogle Scholar
  6. Bates, D., Maechler, M., Bolker, B. (2013). lme4: linear mixed-effects models using S4 classes.
  7. Bates, E., McNew, S., MacWhinney, B., Devescovi, A., Smith, S. (1982). Functional constraints on sentence processing: a cross-linguistic study. Cognition, 11, 245–299.PubMedCrossRefGoogle Scholar
  8. Bates, E., Devescovi, A., Wulfeck, B. (2001). Psycholinguistics: a cross-language perspective. Annual Review of Psychology, 52, 369–396.PubMedCrossRefGoogle Scholar
  9. Bornkessel, I. (2002). The argument dependency model: a neurocognitive approach to incremental interpretation (Vol. 28). Leipzig: MPI Series in Cognitive Neuroscience.Google Scholar
  10. Bornkessel, I., & Schlesewsky, M. (2006). The extended argument dependency model: a neurocognitive approach to sentence comprehension across languages. Psychological Review, 113(4), 787–821.PubMedCrossRefGoogle Scholar
  11. Bornkessel, I., Fiebach, C. J., Friederici, A. D. (2004a). On the cost of syntactic ambiguity in human language comprehension: an individual differences approach. Cognitive Brain Research, 21, 11–21.CrossRefGoogle Scholar
  12. Bornkessel, I., McElree, B., Schlesewsky, M., Friederici AD (2004b). Multi-dimensional contributions to garden path strength: dissociating phrase structure from case marking. Journal of Memory and Language, 51, 495–522.CrossRefGoogle Scholar
  13. Bornkessel, I., Zysset, S., Friederici, A. D., von Cramon, D. Y., Schlesewsky, M. (2005). Who did what to whom? The neural basis of argument hierarchies during language comprehension. Neuroimage, 26(1), 221—233.PubMedCrossRefGoogle Scholar
  14. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2008). An alternative perspective on “semantic P600” effects in language comprehension. Brain Research Reviews, 59, 55–73.PubMedCrossRefGoogle Scholar
  15. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2009). The role of prominence information in the real-time comprehension of transitive constructions: a cross-linguistic approach. Language and Linguistics Compass, 3(1), 19–58.CrossRefGoogle Scholar
  16. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2013a). Neurotypology: Modelling cross-linguistic similarities and differences in the neurocognition of language comprehension. In M. Sanz, I. Laka, M.K. Tanenhaus (Eds.), The cognitive and biological basis for linguistic structure: new approaches and enduring themes, (pp. 241–252). Oxford: Oxford University Press.CrossRefGoogle Scholar
  17. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (2013b). Reconciling time, space and function: a new dorsal-ventral stream model of sentence comprehension. Brain and Language, 125(1), 60–76. doi: 10.1016/j.bandl.2013.01.010.PubMedCrossRefGoogle Scholar
  18. Bornkessel-Schlesewsky, I., & Schlesewsky, M. (to appear). Competition in argument interpretation: evidence from the neurobiology of language. In B. MacWhinney, A. Malchukov, E. Moravcsik (Eds.), Competing motivations in grammar and usage. Oxford: Oxford University Press.Google Scholar
  19. Bornkessel-Schlesewsky, I., Kretzschmar, F., Tune, S., Wang, L., Genç, S., Philipp, M., Roehm, D., Schlesewsky, M. (2011). Think globally: cross-linguistic variation in electrophysiological activity during sentence comprehension. Brain and Language, 117(3), 133–152.PubMedCrossRefGoogle Scholar
  20. Bourguignon, N., Drury, J. E., Valois, D., Steinhauer, K. (2012). Decomposing animacy reversals between agents and experiencers: an ERP study. Brain and Language, 122(3), 179–189.PubMedCrossRefGoogle Scholar
  21. Brouwer, H., Fitz, H., Hoeks, J. (2012). Getting real about semantic illusions: rethinking the functional role of the P600 in language comprehension. Brain Research, 1446, 127–143.PubMedCrossRefGoogle Scholar
  22. Burnham, K. P., & Anderson, D. R. (2002). Model selection and multi-model inference: a practical information-theoretic approach. Springer.Google Scholar
  23. Choudhary, K. K., Schlesewsky, Bickel, B., Bornkessel-Schlesewsky, I. (2010). An actor-preference in a split-ergative language: electrophysiological evidence from Hindi. In Proceedings from 23rd annual meeting of the cuny conference on human sentence processing. New York City.Google Scholar
  24. Coulson, S., King, J. W., Kutas M (1998). ERPs and domain specificity: beating a straw horse. Language and Cognitive Processes, 13, 653–672.CrossRefGoogle Scholar
  25. Crocker, M. W. (1994). On the nature of the principle-based sentence processor. In J.C. Clifton, L. Frazier, K. Rayner (Eds.), Perspectives on sentence processing, (pp. 245–266). Hillsdale: Erlbaum.Google Scholar
  26. Croft, W. A. (2001). Radical construction grammar: syntactic theory in typological perspective. Oxford: Oxford University Press.CrossRefGoogle Scholar
  27. Dahl, Ö. (2008). Animacy and egophoricity: grammar, ontology and phylogeny. Lingua, 118, 141–150.CrossRefGoogle Scholar
  28. Deco, G., Rolls, E. T., Romo, R. (2009). Stochastic dynamics as a principle of brain function. Progress in Neurobiology, 88(1), 1–16.PubMedCrossRefGoogle Scholar
  29. Deco, G., Rolls, E. T., Albantakis, L., Romo, R. (2012). Brain mechanisms for perceptual and reward-related decision-making. Progress in Neurobiology.Google Scholar
  30. DeLong, K. A., Urbach, T. P., Kutas, M. (2005). Probabilistic word pre-activation during language comprehension inferred from electrical brain activity. Nature Neuroscience, 8(8), 1117–1121.PubMedCrossRefGoogle Scholar
  31. Demiral, Ş., Schlesewsky, M., Bornkessel-Schlesewsky, I. (2008). On the universality of language comprehension strategies: evidence from Turkish. Cognition, 106(1), 484–500.PubMedCrossRefGoogle Scholar
  32. DeWitt, I., & Rauschecker, J. (2012). Phoneme and word recognition in the auditory ventral stream. Proceedings of the National Academy of Sciences, E505–E514.Google Scholar
  33. Fausey, C., & Boroditsky, L. (2011). Who dunnit? Cross-linguistic differences in eye-witness memory. Psychonomic Bulletin and Review, 18, 150–157.PubMedCrossRefGoogle Scholar
  34. Fausey, C. M., Long, B. L., Inamori, A., Boroditsky, L. (2010). Constructing ageny: the role of language. Frontiers in Psychology, 1(162).Google Scholar
  35. Federmeier, K. D. (2007). Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology, 44, 491–505.PubMedCentralPubMedCrossRefGoogle Scholar
  36. Felleman, D., & Van Essen, D. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex, 1(1), 1–47.PubMedCrossRefGoogle Scholar
  37. Fodor, J. A. (1983). Modularity of mind. An essay on faculty psychology. Cambridge: MIT Press.Google Scholar
  38. Frazier, L. (1987). Syntactic processing: evidence from dutch. Natural Language and Linguistic Theory, 5, 519–559. doi:10.1007/BF00138988.CrossRefGoogle Scholar
  39. Frenzel, S., Schlesewsky, M., Bornkessel-Schlesewsky, I. (2011). Conflicts in language processing: a new perspective on the N400–P600 distinction. Neuropsychologia, 49(3), 574–579.PubMedCrossRefGoogle Scholar
  40. Friederici, A. D. (2002). Towards a neural basis of auditory sentence processing. Trends in Cognitive Sciences, 6(2), 78–84.PubMedCrossRefGoogle Scholar
  41. Frisch, S., & Schlesewsky, M. (2001). The N400 reflects problems of thematic hierarchizing. NeuroReport, 12(15), 3391–3394.PubMedCrossRefGoogle Scholar
  42. Frith, U., & Frith, C. D. (2010). The social brain: allowing humans to boldly go where no other species has been. Philosophical Transactions of the Royal Society B, 365, 165–176.CrossRefGoogle Scholar
  43. Grewe, T., Bornkessel, I., Zysset, S., Wiese, R., von Cramon, D. Y., Schlesewsky, M. (2006). Linguistic prominence and broca’s area: The influence of animacy as a linearization principle. Neuroimage, 32, 1395–1402.PubMedCrossRefGoogle Scholar
  44. Haggard, P. (2008). Human volition: towards a neuroscience of will. Nature Reviews Neuroscience, 9, 934–946.PubMedCrossRefGoogle Scholar
  45. Hagoort, P. (2003). How the brain solves the binding problem for language: a neurocomputational model of syntactic processing. Neuroimage, 20, 18–29.CrossRefGoogle Scholar
  46. Hagoort, P. (2005). On broca, brain, and binding: a new framework. Trends in Cognitive Sciences, 9(9), 416–422.PubMedCrossRefGoogle Scholar
  47. Hahne, A., & Friederici, A. D. (2002). Differential task effects on semantic and syntactic processes as revealed by ERPs. Cognitive Brain Research, 13, 339–356.PubMedCrossRefGoogle Scholar
  48. Haupt, F. S., Schlesewsky, M., Roehm, D., Friederici, A. D., Bornkessel-Schlesewsky, I. (2008). The status of subject–object reanalyses in the language comprehension architecture. Journal of Memory and Language, 59, 54–96.CrossRefGoogle Scholar
  49. Heekeren, H., Marrett, S., Bandettini, P., Ungerleider, L. (2004). A general mechanism for perceptual decision-making in the human brain. Nature, 431(7010), 859–862.PubMedCrossRefGoogle Scholar
  50. Huynh, H., & Feldt, L. S. (1970). Conditions under which mean square ratios in repeated measurements designs have exact f-distributions. Journal of the American Statistical Association, 65(332), 1582–1589.CrossRefGoogle Scholar
  51. Jonides, J., Lewis, R., Nee, D., Lustig, C. (2008). The mind and brain of short-term memory. Annual Review of Psychology, 59, 193–224.PubMedCrossRefGoogle Scholar
  52. Kempe, V., & MacWhinney, B. (1999). Processing of morphological and semantic cues in Russian and German. Language and Cognitive Processes, 14(2), 129–171.CrossRefGoogle Scholar
  53. Kim, A., & Osterhout, L. (2005). The independence of combinatory semantic processing: evidence from event-related potentials. Journal of Memory and Language, 52(2), 205–225.CrossRefGoogle Scholar
  54. Kolk, H. H., Chwilla, D. J., van Herten, M., Oor, P. (2003). Structure and limited capacity in verbal working memory: a study with event-related potentials. Brain and Language, 85, 1–36.PubMedCrossRefGoogle Scholar
  55. Kretzschmar, F. (2010). The electrophysiological reality of parafoveal processing: on the validity of language-related ERPs in natural reading. PhD thesis, University of Marburg.Google Scholar
  56. Kuperberg, G. R. (2007). Neural mechanisms of language comprehension: challenges to syntax. Brain Research, 1146, 23–49.PubMedCrossRefGoogle Scholar
  57. Kutas, M., & Federmeier, K. D. (2000). Electrophysiology reveals semantic memory use in language comprehension. Trends in Cognitive Sciences, 4(12), 463–470.PubMedCrossRefGoogle Scholar
  58. Kutas, M., & Hillyard, S. A. (1980). Reading senseless sentences: brain potentials reflect semantic incongruity. Science, 207(4427), 203–205.PubMedCrossRefGoogle Scholar
  59. Lau, E. F., Phillips, C., Poeppel, D. (2008). A cortical network for semantics: (de)constructing the N400. Nature Reviews Neuroscience, 9(12), 920–933.PubMedCrossRefGoogle Scholar
  60. Leslie, A. M. (1995). A theory of agency. In D. Sperber, D. Premack, A.J. Premack (Eds.), Causal cognition. A multidisciplinary debate (pp. 121–141). Oxford: Clarendon Press.Google Scholar
  61. Lewis, R., & Vasishth, S. (2005). An activation-based model of sentence processing as skilled memory retrieval. Cognitive Science: A Multidisciplinary Journal.Google Scholar
  62. Lewis, R., Vasishth, S., Dyke, J. V. (2006). Computational principles of working memory in sentence comprehension. Trends in Cognitive Sciences, 10(10), 447–454.PubMedCentralPubMedCrossRefGoogle Scholar
  63. Lewis, R. L. (2000). Specifying architectures for language processing: process, control, and memory in parsing and interpretation. In Mechanisms for language processing.Google Scholar
  64. Lotze, N., Tune, S., Schlesewsky, M., Bornkessel-Schlesewsky, I. (2011). Meaningful physical changes mediate lexical-semantic integration: top-down and form-based bottom-up information sources interact in the N400. Neuropsychologia, 49, 3573–3582.PubMedCrossRefGoogle Scholar
  65. MacWhinney, B., & Bates, E. (1989). The cross-linguistic study of sentence processing. New York: Cambridge University Press.Google Scholar
  66. MacWhinney, B., Bates, E., Kliegl, R. (1984). Cue validity and sentence intERPretation in english, German and Italian. Journal of Verbal Learning and Verbal Behavior, 23(2), 127–50.CrossRefGoogle Scholar
  67. Magnusdottir, S., Fillmore, P., den Ouden, D., Hjaltason, H., Rorden, C., Kjartansson, O., Bonilha, L., Fridriksson, J. (2012). Damage to left anterior temporal cortex predicts impairment of complex syntactic processing: a lesion-symptom mapping study. Human Brain Mapping.Google Scholar
  68. Manning, C. D., & Schütze, H. (2000). Foundations of statistical natural language processing. Cambridge: MIT Press.Google Scholar
  69. Maris, E. (2004). Randomization tests for ERP topographies and whole spatiotemporal data matrices. Psychophysiology, 41, 142–151.PubMedCrossRefGoogle Scholar
  70. Maris, E., & Oostenveld, R. (2007). Nonparametric statistical testing of EEG- and MEG-data. Journal of Neuroscience Methods, 164, 177–190.PubMedCrossRefGoogle Scholar
  71. Marslen-Wilson, W. (1973). Linguistic structure and speech shadowing at very short latencies. Nature, 244, 522–533.PubMedCrossRefGoogle Scholar
  72. Martin, A. E., & McElree, B. (2008). A content-addressable pointer mechanism underlies comprehension of verb-phrase ellipsis. Journal of Memory and Language, 58, 879–906.CrossRefGoogle Scholar
  73. McElree, B. (2006). Accessing recent events. In B.H. Ross (Ed.), The psychology of learning and motivation (Vol. 46). San Diego: Academic Press.Google Scholar
  74. McElree, B., Foraker, S., Dyer, L. (2003). Memory structures that subserve sentence comprehension. Journal of Memory and Language, 48(1), 67–91.CrossRefGoogle Scholar
  75. Muralikrishnan, R., Schlesewsky, M., Bornkessel-Schlesewsky, I. (2008). Universal and cross-linguistic influences on the processing of word order and animacy: Neurophysiological evidence from Tamil. In Proceedings from 21st annual CUNY conference on human sentence processing, Chapel Hill.Google Scholar
  76. New, J., Cosmides, L., Tooby, J. (2007). Category-specific attention for animals reflects ancestral priorities, not expertise. Proceedings of the National Academy of Sciences, 104(42), 16,598–16,603.CrossRefGoogle Scholar
  77. Newell, A. (1990). Unified theories of cognition. Cambridge: Harvard University Press.Google Scholar
  78. Nieuwenhuis, S., Aston-Jones, G., Cohen, J. D. (2005). Decision making, the p3, and the locus coerulus-norepinephrine system. Psychological Bulletin, 131, 510–532.PubMedCrossRefGoogle Scholar
  79. Oldfield, R. C. (1971). The assessment and analysis of handedness: The edinburgh inventory. Neuropsychologia, 9, 97–113.PubMedCrossRefGoogle Scholar
  80. Penolazzi, B., Vincenzi, M. D., Angrilli, A., Job, R. (2005). Processing of temporary syntactic ambiguity in Italian “who”-questions: a study with event-related potentials. Neuroscience Letters, 377(2), 91–96.PubMedCrossRefGoogle Scholar
  81. Philipp, M., Bornkessel-Schlesewsky, I., Bisang, W., Schlesewsky, M. (2008). The role of animacy in the real time comprehension of Mandarin Chinese: evidence from auditory event-related brain potentials. Brain and Language, 105(2), 112–133.PubMedCrossRefGoogle Scholar
  82. Rauschecker, J. (1998). Cortical processing of complex sounds. Current Opinion in Neurobiology, 8(4), 516–521.PubMedCrossRefGoogle Scholar
  83. Rauschecker, J., & Scott, S. (2009). Maps and streams in the auditory cortex: nonhuman primates illuminate human speech processing. Nat Neurosci, 12(6), 718–724.PubMedCentralPubMedCrossRefGoogle Scholar
  84. Roehm, D., Schlesewsky, M., Bornkessel, I., Frisch, S., Haider, H. (2004). Fractionating language comprehension via frequency characteristics of the human EEG. NeuroReport, 15(3), 409–412.PubMedCrossRefGoogle Scholar
  85. Roehm, D., Bornkessel-Schlesewsky, I., Rösler, F., Schlesewsky, M. (2007). To predict or not to predict: influences of task and strategy on the processing of semantic relations. Journal of Cognitive Neuroscience, 19, 1259–1274.PubMedCrossRefGoogle Scholar
  86. Sassenhagen, J., Kretzschmar, F., Mueller, E., Schlesewsky, M., Bornkessel-Schlesewsky, I. (2013). Independent components dominating ERP responses to linguistic stimuli also respond to domain-general events. Manuscript submitted for publication.Google Scholar
  87. Schlesewsky, M., & Bornkessel, I. (2004). On incremental interpretation: degrees of meaning accessed during sentence comprehension. Lingua, 114(9–10), 1213–1234.CrossRefGoogle Scholar
  88. Schlesewsky, M., Fanselow, G., Kliegl, R., Krems, J. (2000). The subject preference in the processing of locally ambiguous wh-questions in German. In B. Hemforth, & L. Konieczny (Eds.), German sentence processing (pp. 65–93). Dordrecht: Kluwer.CrossRefGoogle Scholar
  89. Schriefers, H., Friederici, A. D., Kuhn, K. (1995). The processing of locally ambiguous relative clauses in German. Journal of Memory and Language, 34(4), 499–520.CrossRefGoogle Scholar
  90. Schwarz, G. (1978). Estimating the dimension of a model. Annals of Statistics, 6(2), 461–464.CrossRefGoogle Scholar
  91. Silverstein, M. (1976). Hierarchy of features and ergativity. In R.M. Dixon (Ed.), Grammatical categories in Australian languages (pp. 112–171). New Jersey: Humanities Press.Google Scholar
  92. Simon, H. A. (1962). The architecture of complexity. Proceedings of the American Philosophical Society, 106, 467–482.Google Scholar
  93. Stevens, S. S. (1951). Mathematics, measurement and psychophysics. In S.S. Stevens (Ed.) Handbook of experimental psychology (pp. 1–49). Wiley .Google Scholar
  94. Stroud, C., & Phillips, C. (2012). Examining the evidence for an independent semantic analyzer: an ERP study in spanish. Brain and Language, 120, 108–126.PubMedCrossRefGoogle Scholar
  95. Tomasello, M. (2003). Constructing a language: a usage-based theory of language acquisition. Cambridge: Harvard University Press.Google Scholar
  96. Tomlin, R. (1986). Basic word order: Functional principles. London: Croom Helm.Google Scholar
  97. van de Meerendonk, N., Kolk, H. H., Chwilla, D. J., Vissers, C.T.W.M. (2009). Monitoring in language perception. Language and Linguistics Compass, 3, 1211–1224.CrossRefGoogle Scholar
  98. van de Meerendonk, N., Kolk, H. H., Vissers, C.T.W.M., Chwilla, D. J. (2010). Monitoring in language perception: mild and strong conflicts elicit different ERP patterns. Journal of Cognitive Neuroscience, 22, 67–82.PubMedCrossRefGoogle Scholar
  99. Vincenzi, M. D. (1991). Filler-gap dependencies in a null-subject language: referential and non-referential whs. Journal of Psycholinguistic Research, 20(3), 197–213.CrossRefGoogle Scholar
  100. Vissers, C.T.W.M., Chwilla, D., Kolk, H. (2006). Monitoring in language perception: The effect of misspellings of words in highly constrained sentences. Brain Research, 1106, 150–163.PubMedCrossRefGoogle Scholar
  101. Vosse, T., & Kempen, G. (2000). Syntactic structure assembly in human parsing: a computational model based on competitive inhibition and a lexicalist grammar. Cognition, 75, 105–143.PubMedCrossRefGoogle Scholar
  102. Vosse, T. G., & Kempen, G. AM. (2008). Parsing verb-final clauses in German: garden-path and ERP effects modeled by a parallel dynamic parser. In B. Love, K. McRae, V. Sloutsky (Eds.), Proceedings of the 30th annual conference of the cognitive science society (Washington, DC, July 2008). Austin: Cognitive Science Society.Google Scholar
  103. Vosse, T., & Kempen, G. (2009). The unification space implemented as a localist neural net: predictions and error-tolerance in a constraint-based parser. Cognitive Neurodynamics, 3, 331–346.PubMedCentralPubMedCrossRefGoogle Scholar
  104. Wang, L., Schlesewsky, M., Bickel, B., Bornkessel-Schlesewsky, I. (2009). Exploring the nature of the ‘subject’-preference: evidence from the online comprehension of simple sentences in Mandarin Chinese. Language and Cognitive Processes, 24(7/8), 1180–1226.CrossRefGoogle Scholar
  105. Weckerly, J., & Kutas, M. (1999). An electrophysiological analysis of animacy effects in the processing of object relative sentences. Psychophysiology, 36(05), 559–570.PubMedCrossRefGoogle Scholar
  106. Whitney, C., Huber, W., Klann, J., Weis, S., Krach, S., Kircher, T. (2009). Neural correlates of narrative shifts during auditory story comprehension. NeuroImage, 47, 360–366.PubMedCrossRefGoogle Scholar
  107. Wolff, S., Schlesewsky, M., Hirotani, M., Bornkessel-Schlesewsky, I. (2008). The neural mechanisms of word order processing revisited: Electrophysiological evidence from Japanese. Brain and Language, 107, 133–157.PubMedCrossRefGoogle Scholar
  108. Zipf, G. K. (1935). The psycho-biology of language. Boston: Houghton Mifflin Company.Google Scholar
  109. Zipf, G. K. (1949). Human behavior and the principle of least effort. Cambridge: Addison-Wesley.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Phillip M. Alday
    • 1
  • Matthias Schlesewsky
    • 2
  • Ina Bornkessel-Schlesewsky
    • 1
  1. 1.Department of Germanic LinguisticsUniversity of MarburgMarburgGermany
  2. 2.Department of English and LinguisticsUniversity of MainzMainzGermany

Personalised recommendations