Neuroinformatics

, Volume 11, Issue 3, pp 355–366 | Cite as

Node Accessibility in Cortical Networks During Motor Tasks

  • Mario Chavez
  • Fabrizio De Vico Fallani
  • Miguel Valencia
  • Julio Artieda
  • Donatella Mattia
  • Vito Latora
  • Fabio Babiloni
Original Article

Abstract

Recent findings suggest that the preparation and execution of voluntary self-paced movements are accompanied by the coordination of the oscillatory activities of distributed brain regions. Here, we use electroencephalographic source imaging methods to estimate the cortical movement-related oscillatory activity during finger extension movements. Then, we apply network theory to investigate changes (expressed as differences from the baseline) in the connectivity structure of cortical networks related to the preparation and execution of the movement. We compute the topological accessibility of different cortical areas, measuring how well an area can be reached by the rest of the network. Analysis of cortical networks reveals specific agglomerates of cortical sources that become less accessible during the preparation and the execution of the finger movements. The observed changes neither could be explained by other measures based on geodesics or on multiple paths, nor by power changes in the cortical oscillations.

Keywords

Complex networks Brain connectivity Voluntary self-paced movements 

Supplementary material

12021_2013_9185_MOESM1_ESM.pdf (150 kb)
(PDF 150 KB)

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Computational Biology, 3, e17.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Ansmann, G., & Lehnertz, K. (2011). Constrained randomization of weighted networks. Physical Review E, 84, 026103.CrossRefGoogle Scholar
  3. Astolfi, L., Cincotti, F., Mattia, D., de Vico Fallani, F., Lai, M., Baccala, L., Salinari, S., Ursino, M., Zavaglia, M., Babiloni, F. (2005). Comparison of different multivariate methods for the estimation of cortical connectivity: Simulations and applications to EEG data. In Conference proceedings of the IEEE engineering in medicine and biology society (pp. 4484–4487).Google Scholar
  4. Bai, O., Mari, Z., Vorbach, S., Hallet, M. (2005). Asymmetric spatio-temporal patterns of event-related desynchronization preceding voluntary sequential finger movements: a high-resolution EEG study. Clinical Neurophysiology, 116, 1213–1221.PubMedCrossRefGoogle Scholar
  5. Baillet, S., Mosher, J., Leahy, R. (2001). Electromagnetic brain mapping. IEEE Signal Processing Magazine, 18, 14–30.CrossRefGoogle Scholar
  6. Baker, K.S., Mattingley, J.B., Chambers, C.D., Cunnington, R. (2011). Attention and the readiness for action. Neuropsychologia, 49(12), 3303–3313.PubMedCrossRefGoogle Scholar
  7. Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human brain functional networks. Proceedings of the National Academy of Sciences of the United States of America, 103, 19518–19523.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B, 57, 289–300.Google Scholar
  9. Benjamini, Y., & Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Annals of Statistics, 29, 1165–1188.CrossRefGoogle Scholar
  10. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.-U. (2006). Complex networks: structure and dynamics. Physics Reports, 424, 175–308.CrossRefGoogle Scholar
  11. Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2, 113–120.CrossRefGoogle Scholar
  12. Borgatti, S.P. (2005). Centrality and network flow. Social Networks, 27, 55–71.CrossRefGoogle Scholar
  13. Brillinger, D.R. (2001). Time series: Data analysis and theory. Philadelphia: SIAM.CrossRefGoogle Scholar
  14. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 1–13.CrossRefGoogle Scholar
  15. Bullmore, E.T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., Bramme, M.J. (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Transactions on Medical Imaging, 18, 32–42.PubMedCrossRefGoogle Scholar
  16. Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., Di Lazzaro, V., Brown, P. (2002). Movement-related changes in synchronization in the human basal ganglia. Brain, 125, 1235–1246.PubMedCrossRefGoogle Scholar
  17. Cheyne, D., Bells, S., Ferrari, P., Gaetz, W., Bostan, A.C. (2008). Self-paced movements induce high-frequency gamma oscillations in primary motor cortex. Neuroimage, 42(1), 332–342.PubMedCrossRefGoogle Scholar
  18. Chung, F.R.K. (1997). Spectral graph theory. Providence: American Mathematical Society.Google Scholar
  19. Cincotti, F., Mattia, D., Aloise, F., Bufalari, S., Astolfi, L., De Vico Fallani, F., Tocci, A., Bianchi, L., Marciani, M.G., Gao, S., Millan, J., Babiloni, F. (2008). High-resolution EEG techniques for brain-computer interface applications. Journal of Neuroscience Methods, 167, 31–42.PubMedCrossRefGoogle Scholar
  20. Crofts, J.J., & Higham, D.J. (2009). A weighted communicability measure applied to complex networks. Journal of the Royal Society Interface, 6, 411–414.PubMedCentralCrossRefGoogle Scholar
  21. da Fontoura Costa, L., Rodrigues, F.A., Travieso, G., Boas, P.R.V. (2002). Characterization of complex networks: a survey of measurements. Advances in Physics, 56, 167–242.CrossRefGoogle Scholar
  22. da Fontoura Costa, L., Batista, J.L.B., Ascoli, G.A. (2011). Communication structure of cortical networks. Frontiers in Computational Neuroscience, 5, 6.PubMedCentralPubMedGoogle Scholar
  23. Dale, A.M., & Sereno, M.I. (1993). Improved localisation of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: a linear approach. Journal of Cognitive Neuroscience, 5, 162–176.PubMedCrossRefGoogle Scholar
  24. De Vico Fallani, F., Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Tocci, A., Salinari, S., Witte, H., Hesse, W., Gao, S., Colosimo, A., Babiloni, F. (2008). Cortical network dynamics during foot movements. Neuroinformatics, 6(1), 23–34.PubMedCrossRefGoogle Scholar
  25. De Vico Fallani, F., Rodrigues, F.A., da Fontoura Costa, L., Astolfi, L., Cincotti, F., Mattia, D., Salinari, S., Babiloni, F. (2011). Multiple pathways analysis of brain functional networks from EEG signals: an application to real data. Brain Topography, 23, 344–354.PubMedCrossRefGoogle Scholar
  26. Doyle, P.G., & Snell, L. (1984). Random walks and electric networks,. Washington: The Mathematical Association of America.Google Scholar
  27. Eguíluz, V.M., Chialvo, D.R., Cecchi, G.A., Baliki, M., Apkarian, A.V. (2005). Scale-free brain functional networks. Physical Review Letters, 94, 018102.PubMedCrossRefGoogle Scholar
  28. Estrada, E., & Hatano, N. (2008). Communicability in complex networks. Physical Review E, 77, 036111.CrossRefGoogle Scholar
  29. Estrada, E., Higham, D.J., Hatano, N. (2009). Communicability betweenness in complex networks. Physica A, 388, 764–774.CrossRefGoogle Scholar
  30. Fogassi, L., & Luppino, G. (2005). Motor functions of the parietal lobe. Current Opinion in Neurobiology, 15, 626–631.PubMedCrossRefGoogle Scholar
  31. Freeman, L.C. (1977). A set of measures of centrality based on betweenness. Sociometry, 40, 35–41.CrossRefGoogle Scholar
  32. Gross, J., Timmermann, L., Kujala, J., Dirks, M., Schmitz, F., Salmelin, R., Schnitzler, A. (2002). The neural basis of intermittent motor control in humans. Proceedings of the National Academy of Sciences of the United States of America, 99, 2299–2302.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Gross, J., Schmitz, F., Schnitzler, I., Kessler, K., Shapiro, K., Hommel, B., Schnitzler, A. (2004). Modulation of long-range neural synchrony reflects temporal limitations of visual attention in humans. Proceedings of the National Academy of Sciences of the United States of America, 101, 13050–13055.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Hayasaka, S., & Nichols, T.E. (2003). Validating cluster size inference: random field and permutation methods. Neuroimage, 20, 2343–2356.PubMedCrossRefGoogle Scholar
  35. He, B. (1998). High-resolution source imaging of brain electrical activity. IEEE Engineering in Medicine and Biology Magazine, 17, 123–129.PubMedCrossRefGoogle Scholar
  36. He, B., Wang, Y., Wu, D. (1999). Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model by means of the boundary element method. IEEE Transactions on Biomedical Engineering, 46, 1264–1268.PubMedCrossRefGoogle Scholar
  37. Horwitz, B. (1994). The elusive concept of brain connectivity. Neuroimage, 19, 466–470.CrossRefGoogle Scholar
  38. Ikeda, A., Lüders, H.O., Burgess, R.C., Shibasaki, H. (1992). Movement-related potentials recorded from supplementary motor area and primary motor area. Role of supplementary motor area in voluntary movements. Brain, 115, 1017–1043.PubMedCrossRefGoogle Scholar
  39. Imamoglu, F., Kahnt, T., Koch, C., Haynes, J.-D. (2012). Changes in functional connectivity support conscious object recognition. Neuroimage, 63, 1909–1917.PubMedCrossRefGoogle Scholar
  40. Jin, S.H., Lin, P., Hallett, M. (2012). Reorganization of brain functional small-world networks during finger movements. Human Brain Mapping, 115, 861–872.CrossRefGoogle Scholar
  41. Langer, N., Peroni, A., Jäncke, L. (2013). The problem of thresholding in small-world network analysis. PLoS ONE, 8, e53199.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Leocani, L., Toro, C., Manganotti, P., Zhuang, P., Hallett, M. (1997). Event-related coherence and event-related desynchronization/synchronization in the 10 hz and 20 Hz EEG during self-paced movements. Clinical Neurophysiology, 104, 199–206.Google Scholar
  43. Lovász, L. (1993). Random walks on graphs: A survey. In D. Miklos, V.T. Sos, T. Szonyi (Eds.), Combinatorics, Paul Erdõs is eighty (Vol. 2, pp. 353–398). Budapest: János Bolyai Mathematical Society.Google Scholar
  44. Mattia, D., Cincotti, F., Astolfi, L., De Vico Fallani, F., Scivoletto, G., Marciani, M.G., Babiloni, F. (2009). Motor cortical responsiveness to attempted movements in tetraplegia: evidence from neuroelectrical imaging. Clinical Neurophysiology, 119, 2231–2237.Google Scholar
  45. Middleton, F.A., & Strick, P.L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31, 236–250.PubMedCrossRefGoogle Scholar
  46. Moretti, D.V., Babiloni, F., Carducci, F., Cincotti, F., Remondini, E., Rossigni, P.M., Salinari, S., Babiloni, C. (2003). Computerized processing of EEG-EOG-EMG artifacts for multi-centric studies in EEG oscillations and event-related potentials. International Journal of Psychophysiology, 47, 199–216.PubMedCrossRefGoogle Scholar
  47. Muthukumaraswamy, S.D. (2010). Functional properties of human primary motor cortex gamma oscillations. Journal of Neurophysiology, 104(5), 2873–2885.PubMedCrossRefGoogle Scholar
  48. Newman, M.E.J. (2003). The structure and function of complex networks. SIAM Review, 45, 167–256.CrossRefGoogle Scholar
  49. Newman, M.E.J. (2005). A measure of betweenness centrality based on random walks. Social Networks, 27, 39–54.CrossRefGoogle Scholar
  50. Noh, J.D., & Rieger, H. (2004). Random walks in complex networks. Physical Review Letters, 92, 118701.PubMedCrossRefGoogle Scholar
  51. Nolte, G., Bai, U., Weathon, L., Mari, Z., Vorbach, S., Hallet, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115, 2294–2307.CrossRefGoogle Scholar
  52. Nunez, P.L., Srinivasan, R., Westdorp, A.F., Wijesinghe, R.S., Tucker, D.M., Silberstein, R.B., Cadusch, P.J. (1997). EEG coherency I: statistics, reference electrode, volume conduction, laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalography and Clinical Neurophysiology, 103, 499–515.PubMedCrossRefGoogle Scholar
  53. Ohara, S., Mima, T., Baba, K., Ikeda, A., Kunieda, T., Matsumoto, R., Yamamoto, J., Matsuhashi, M., Nagamine, T., Hirasawa, K., Hori, T., Mihara, T., Hashimoto, N., Salenius, S., Shibasaki, H. (2001). Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. Journal of Neuroscience, 21(23), 9377–9386.PubMedGoogle Scholar
  54. Pantazis, D., Nichols, T.E., Baillet, S., Leahy, R.M. (2005). A comparison of random field theory and permutation methods for the statistical analysis of MEG data. Neuroimage, 25, 383–394.PubMedCrossRefGoogle Scholar
  55. Pfurtscheller, G., & Lopes da Silva, F.H. (1999). Event-related EEG/MEG synchronization and desynchronization: basic principles. Clinical Neurophysiology, 11, 1842–1857.CrossRefGoogle Scholar
  56. Pollok, B., Gross, J., Schnitzler, A. (2002). Human cortical EEG rhythms during the observation of simple aimless movements. A high resolution EEG study. Neuroimage, 17, 559–572.CrossRefGoogle Scholar
  57. Pollok, B., Gross, J., Schnitzler, A. (2006). How the brain controls repetitive finger movements. Journal of Physiology - Paris, 99, 8–13.CrossRefGoogle Scholar
  58. Reijneveld, J.C., Ponten, S.C., Berendse, H.W., Stam, C.J. (2007). The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 118, 2317–2331.PubMedCrossRefGoogle Scholar
  59. Rodrigues, F.A., & da Fontoura Costa, L. (2010). Generalized connectivity between any two nodes in a complex network. Physical Review E, 81, 036113.CrossRefGoogle Scholar
  60. Schlögel, A., & Supp, G. (2006). Analyzing event-related EEG data with multivariate autoregressive parameters. In C. Neuper, & W. Klimesh (Eds.), Progress in brain research (Vol. 159, pp. 135–147). The Netherlands: Elsevier.Google Scholar
  61. Schoffelen, J.M., & Gross, J. (2009). Source connectivity analysis with MEG and EEG. Human Brain Mapping, 30, 1857–1865.PubMedCrossRefGoogle Scholar
  62. Sporns, O., Chialvo, D.R., Kaiser, M., Hilgetag, C.C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.PubMedCrossRefGoogle Scholar
  63. Srinivasan, R., Nunez, P.L., Silberstein, R.B. (1998). Spatial filtering and neocortical dynamics: estimates of EEG coherence. IEEE Transactions on Biomedical Engineering, 45, 814–826.PubMedCrossRefGoogle Scholar
  64. Stephenson, K., & Zelen, M. (1989). Rethinking centrality: methods and examples. Social Networks, 11, 1–37.CrossRefGoogle Scholar
  65. Toppi, J., De Vico Fallani, F., Vecchiato, G., Maglione, A.G., Cincotti, F., Mattia, D., Salinari, S., Babiloni, F., Astolfi, L. (2012). How the statistical validation of functional connectivity patterns can prevent erroneous definition of small-world properties of a brain connectivity network.Computational and Mathematical Methods in Medicine, 2012, 130985.PubMedCentralPubMedCrossRefGoogle Scholar
  66. Valencia, M., Pastor, M.A., Fernández-Seara, M.A., Artieda, J., Martinerie, J., Chavez, M. (2009). Complex modular structure of large-scale brain networks. Chaos, 19, 02311.CrossRefGoogle Scholar
  67. van Wijk, B.C.M., Stam, C.J., Daffertshofer, A. (2010). Comparing brain networks of different size and connectivity density using graph theory. PLoS ONE, 5, e13701.PubMedCentralPubMedCrossRefGoogle Scholar
  68. Varela, F., Lachaux, J.-P., Rodriguez, E., Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2, 229–239.PubMedCrossRefGoogle Scholar
  69. Wolpert, D.M., Ghahramani, Z., Jordan, M.I. (1995). An internal model for sensorimotor integration. Science, 269, 1880–1882.PubMedCrossRefGoogle Scholar
  70. Zamora-López, G., Zhou, C., Kurths, J. (2009). Graph analysis of cortical networks reveals complex anatomical communication substrate. Chaos, 19, 015117.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mario Chavez
    • 1
  • Fabrizio De Vico Fallani
    • 1
    • 2
    • 3
  • Miguel Valencia
    • 4
  • Julio Artieda
    • 4
  • Donatella Mattia
    • 3
  • Vito Latora
    • 5
  • Fabio Babiloni
    • 2
    • 3
  1. 1.CNRS UMR-7225, Hôpital de la SalpêtrièreParisFrance
  2. 2.Department of Human Physiology and PharmacologyUniversity “La Sapienza”RomeItaly
  3. 3.Neuroelectrical Imaging and BCI LabIRCCS “Fondazione Santa Lucia”RomeItaly
  4. 4.Neurophysiology Laboratory, Division of NeurosciencesCIMA & University of NavarraPamplonaSpain
  5. 5.School of Mathematical Sciences, Queen MaryUniversity of LondonLondonUK

Personalised recommendations