Neuroinformatics

, Volume 11, Issue 3, pp 367–388 | Cite as

The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia

  • Randy L. Gollub
  • Jody M. Shoemaker
  • Margaret D. King
  • Tonya White
  • Stefan Ehrlich
  • Scott R. Sponheim
  • Vincent P. Clark
  • Jessica A. Turner
  • Bryon A. Mueller
  • Vince Magnotta
  • Daniel O’Leary
  • Beng C. Ho
  • Stefan Brauns
  • Dara S. Manoach
  • Larry Seidman
  • Juan R. Bustillo
  • John Lauriello
  • Jeremy Bockholt
  • Kelvin O. Lim
  • Bruce R. Rosen
  • S. Charles Schulz
  • Vince D. Calhoun
  • Nancy C. Andreasen
Original Data Article

Abstract

Expertly collected, well-curated data sets consisting of comprehensive clinical characterization and raw structural, functional and diffusion-weighted DICOM images in schizophrenia patients and sex and age-matched controls are now accessible to the scientific community through an on-line data repository (coins.mrn.org). The Mental Illness and Neuroscience Discovery Institute, now the Mind Research Network (MRN, http://www.mrn.org/), comprised of investigators at the University of New Mexico, the University of Minnesota, Massachusetts General Hospital, and the University of Iowa, conducted a cross-sectional study to identify quantitative neuroimaging biomarkers of schizophrenia. Data acquisition across multiple sites permitted the integration and cross-validation of clinical, cognitive, morphometric, and functional neuroimaging results gathered from unique samples of schizophrenia patients and controls using a common protocol across sites. Particular effort was made to recruit patients early in the course of their illness, at the onset of their symptoms. There is a relatively even sampling of illness duration in chronic patients. This data repository will be useful to 1) scientists who can study schizophrenia by further analysis of this cohort and/or by pooling with other data; 2) computer scientists and software algorithm developers for testing and validating novel registration, segmentation, and other analysis software; and 3) educators in the fields of neuroimaging, medical image analysis and medical imaging informatics who need exemplar data sets for courses and workshops. Sharing provides the opportunity for independent replication of already published results from this data set and novel exploration. This manuscript describes the inclusion/exclusion criteria, imaging parameters and other information that will assist those wishing to use this data repository.

Keywords

Medical Image Data repository Schizophrenia fMRI DWI mMRI Healthy controls 

Supplementary material

12021_2013_9184_MOESM1_ESM.docx (48 kb)
ESM 1(DOCX 48.4 kb)
12021_2013_9184_MOESM2_ESM.webarchive (15 kb)
ESM 2(WEBARCHIVE 15 kb)

References

(* Refers to published manuscripts that have used data from this shared MCIC repository)

  1. Abbott, C. C., Kim, D., 2nd, Sponheim, S. R., Bustillo, J., & Calhoun, V. D. (2010). Decreased default mode neural modulation with age in schizophrenia. The American Journal of Geriatric Psychiatry: Official Journal of the American Association for Geriatric Psychiatry, 18(10), 897–907. doi:10.1097/JGP.0b013e3181e9b9d9.CrossRefGoogle Scholar
  2. *Abbott, C., Juarez, M., White, T., Gollub, R. L., Pearlson, G. D., Bustillo, J., et al. (2011). Antipsychotic dose and diminished neural modulation: a multi-site fMRI study. [Clinical Trial Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(2), 473–482, doi:10.1016/j.pnpbp.2010.12.001.
  3. Addington, D., Addington, J., Maticka-Tyndale, E., & Joyce, J. (1992). Reliability and validity of a depression rating scale for schizophrenics. [Comparative Study]. Schizophrenia Research, 6(3), 201–208.PubMedCrossRefGoogle Scholar
  4. Adriano, F., Caltagirone, C., & Spalletta, G. (2012). Hippocampal volume reduction in first-episode and chronic schizophrenia: a review and meta-analysis. [Meta-Analysis Research Support, Non-U.S. Gov’t Review]. The Neuroscientist: A Review Journal Bringing Neurobiology, Neurology and Psychiatry, 18(2), 180–200. doi:10.1177/1073858410395147.CrossRefGoogle Scholar
  5. Andreasen, N. C. (1983). The Scale for the Assessment of Negative Symptoms (SANS). Iowa City: University of Iowa.Google Scholar
  6. Andreasen, N. C. (1984). Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: University of Iowa.Google Scholar
  7. Andreasen, N. C. (1987). Psychiatric Symptoms You Currently Have—Baseline (PSYCH-BASE) Iowa City. Iowa: The University of Iowa.Google Scholar
  8. Andreasen, N. C., Flaum, M., & Arndt, S. (1992). The Comprehensive Assessment of Symptoms and History (CASH). An instrument for assessing diagnosis and psychopathology. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Archives of General Psychiatry, 49(8), 615–623.PubMedCrossRefGoogle Scholar
  9. Andreasen, N. C., Pressler, M., Nopoulos, P., Miller, D., & Ho, B. C. (2010). Antipsychotic dose equivalents and dose-years: a standardized method for comparing exposure to different drugs. [Research Support, N.I.H., Extramural]. Biological Psychiatry, 67(3), 255–262. doi:10.1016/j.biopsych.2009.08.040.PubMedCrossRefGoogle Scholar
  10. Annett, M. (1970). A classification of hand preference by association analysis. British Journal of Psychology, 61(3), 303–321.PubMedCrossRefGoogle Scholar
  11. Barnes, T. R. (1989). A rating scale for drug-induced akathisia. The British Journal of Psychiatry: The Journal of Mental Science, 154, 672–676.CrossRefGoogle Scholar
  12. Bockholt, H. J., Scully, M., Courtney, W., Rachakonda, S., Scott, A., Caprihan, A., et al. (2010). Mining the mind research network: a novel framework for exploring large scale, heterogeneous translational neuroscience research data sources. Frontiers in Neuroinformatics, 3, 36. doi:10.3389/neuro.11.036.2009.PubMedGoogle Scholar
  13. Brandt, J. (1991). The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. Clinical Neuropsychologist, 5(2), 125–142. doi:10.1080/13854049108403297.
  14. *Brauns, S., Gollub, R. L., Roffman, J. L., Yendiki, A., Ho, B. C., Wassink, T. H., et al. (2011). DISC1 is associated with cortical thickness and neural efficiency. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 57(4), 1591–1600, doi:10.1016/j.neuroimage.2011.05.058.
  15. Braus, D. F., Ende, G., Weber-Fahr, W., Sartorius, A., Krier, A., Hubrich-Ungureanu, P., et al. (1999). Antipsychotic drug effects on motor activation measured by functional magnetic resonance imaging in schizophrenic patients. [Clinical Trial Comparative Study Research Support, Non-U.S. Gov’t]. Schizophrenia Research, 39(1), 19–29.PubMedCrossRefGoogle Scholar
  16. Brown, G. G., McCarthy, G., Bischoff-Grethe, A., Ozyurt, B., Greve, D., Potkin, S. G., et al. (2009). Brain-performance correlates of working memory retrieval in schizophrenia: a cognitive modeling approach. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Schizophrenia Bulletin, 35(1), 32–46. doi:10.1093/schbul/sbn149.PubMedCrossRefGoogle Scholar
  17. Buckner, R. L., Head, D., Parker, J., Fotenos, A. F., Marcus, D., Morris, J. C., et al. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: reliability and validation against manual measurement of total intracranial volume. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 23(2), 724–738. doi:10.1016/j.neuroimage.2004.06.018.PubMedCrossRefGoogle Scholar
  18. Calhoun, V., & Adali, T. (2009). Feature-based fusion of medical imaging data, IEEE transactions on information technology in biomedicine. IEEE transactions on information technology in biomedicine : a publication of the IEEE Engineering in Medicine and Biology Society, 13, 1–10.CrossRefGoogle Scholar
  19. *Calhoun, V., & Adali T. (2012). Multi-subject Independent Component Analysis of fMRI: A Decade of Intrinsic Networks, Default Mode, and Neurodiagnostic Discovery. IEEE Reviews in Biomedical Engineering, 5, 60–73.Google Scholar
  20. Calhoun, V. D., Adali, T., Giuliani, N. R., Pekar, J. J., Kiehl, K. A., & Pearlson, G. D. (2006). Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Human Brain Mapping, 27(1), 47–62. doi:10.1002/hbm.20166.PubMedCrossRefGoogle Scholar
  21. Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., & Kiehl, K. A. (2008). Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain Mapping, 29(11), 1265–1275. doi:10.1002/hbm.20463.PubMedCrossRefGoogle Scholar
  22. Chen, J., Calhoun, V. D., Pearlson, G. D., Ehrlich, S., Turner, J. A., Ho, B. C., et al. (2012). Multifaceted genomic risk for brain function in schizophrenia. [Research Support, N.I.H., Extramural]. NeuroImage, 61(4), 866–875. doi:10.1016/j.neuroimage.2012.03.022.PubMedCrossRefGoogle Scholar
  23. Christodoulou, A. G, Bauer, T. E., Kiehl, K. A., Feldstein Ewing, S., Bryan, A. D., Calhoun, V. D. (2013). A quality control method for detecting and suppressing uncorrected residual motion in fMRI studies, Magnetic Resonance Imaging, 31(5), 707–717. doi:10.1016/j.mri.2012.11.007.
  24. Clark, V. P. (2012). A history of randomized task designs in fMRI. [Historical Article Review]. NeuroImage, 62(2), 1190–1194. doi:10.1016/j.neuroimage.2012.01.010.PubMedCrossRefGoogle Scholar
  25. Clark, V. P., Fannon, S., Lai, S., Benson, R., & Bauer, L. (2000). Responses to rare visual target and distractor stimuli using event-related fMRI. [Clinical Trial]. Journal of Neurophysiology, 83(5), 3133–3139.PubMedGoogle Scholar
  26. *Cullen, K. R., Wallace, S., Magnotta, V. A., Bockholt, J., Erlich, S., Gollub, R. L., et al. (2012). Cigarette smoking and white matter microstructure in schizophrenia. Psychiatry Research, 201(2):152–158. doi:10.1016/j.pscychresns.2011.08.010.Google Scholar
  27. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.PubMedCrossRefGoogle Scholar
  28. Delis, D., Kaplan, E., & Kramer, J. (2001). Delis–Kaplan Executive Function System. San Antonio: The Psychological Corporation.Google Scholar
  29. *Demirci, O., Clark, V. P., & Calhoun, V. D. (2008a). A projection pursuit algorithm to classify individuals using fMRI data: Application to schizophrenia. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 39(4), 1774–1782.Google Scholar
  30. *Demirci, O., Clark, V. P., Magnotta, V. A., Andreasen, N. C., Lauriello, J., Kiehl, K. A., et al. (2008b). A Review of Challenges in the Use of fMRI for Disease Classification/Characterization and A Projection Pursuit Application from Multi-site fMRI Schizophrenia Study. Brain Imaging and Behavior, 2(3), 147–226, doi:10.1007/s11682-008-9028-1.
  31. *Demirci, O., Stevens, M. C., Andreasen, N. C., Michael, A., Liu, J., White, T., et al. (2009). Investigation of relationships between fMRI brain networks in the spectral domain using ICA and Granger causality reveals distinct differences between schizophrenia patients and healthy controls. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 46(2), 419–431, doi:10.1016/j.neuroimage.2009.02.014.
  32. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 31(3), 968–980. doi:10.1016/j.neuroimage.2006.01.021.PubMedCrossRefGoogle Scholar
  33. Desikan, R. S., Cabral, H. J., Settecase, F., Hess, C. P., Dillon, W. P., Glastonbury, C. M., et al. (2010). Automated MRI measures predict progression to Alzheimer’s disease. [Comparative Study Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Neurobiology of Aging, 31(8), 1364–1374. doi:10.1016/j.neurobiolaging.2010.04.023.PubMedCrossRefGoogle Scholar
  34. *Ehrlich, S., Morrow, E. M., Roffman, J. L., Wallace, S. R., Naylor, M., Bockholt, H. J., et al. (2010). The COMT Val108/158Met polymorphism and medial temporal lobe volumetry in patients with schizophrenia and healthy adults. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 53(3), 992–1000, doi:10.1016/j.neuroimage.2009.12.046.
  35. *Ehrlich, S., Brauns, S., Yendiki, A., Ho, B. C., Calhoun, V., Schulz, S. C., et al. (2011a). Associations of cortical thickness and cognition in patients with Schizophrenia and healthy controls. Schizophrenia Bulletin 38(5), 1050–1062, doi:10.1093/schbul/sbr018.Google Scholar
  36. *Ehrlich, S., Yendiki, A., Greve, D. N., Manoach, D. S., Ho, B. C., White, T., et al. (2011b). Striatal function in relation to negative symptoms in schizophrenia. Psychological Medicine, 7:1–16, doi:10.1017/S003329171100119X.
  37. Fennema-Notestine, C., Gamst, A. C., Quinn, B. T., Pacheco, J., Jernigan, T. L., Thal, L., et al. (2007). Feasibility of multi-site clinical structural neuroimaging studies of aging using legacy data. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroinformatics, 5(4), 235–245. doi:10.1007/s12021-007-9003-9.PubMedCrossRefGoogle Scholar
  38. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. [Research Support, U.S. Gov’t, P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 11050–11055. doi:10.1073/pnas.200033797.PubMedCrossRefGoogle Scholar
  39. Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207. doi:10.1006/nimg.1998.0396.PubMedCrossRefGoogle Scholar
  40. Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Human Brain Mapping, 8(4), 272–284.PubMedCrossRefGoogle Scholar
  41. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. [Comparative Study Research Support, U.S. Gov’t, P.H.S.]. Neuron, 33(3), 341–355.PubMedCrossRefGoogle Scholar
  42. Friedman, L., & Glover, G. H. (2006). Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. [Multicenter Study Research Support, N.I.H., Extramural]. NeuroImage, 33(2), 471–481. doi:10.1016/j.neuroimage.2006.07.012.PubMedCrossRefGoogle Scholar
  43. Friedman, J. I., Tang, C., Carpenter, D., Buchsbaum, M., Schmeidler, J., Flanagan, L., et al. (2008a). Diffusion tensor imaging findings in first-episode and chronic schizophrenia patients. [Research Support, N.I.H., Extramural]. The American Journal of Psychiatry, 165(8), 1024–1032. doi:10.1176/appi.ajp.2008.07101640.PubMedCrossRefGoogle Scholar
  44. Friedman, L., Stern, H., Brown, G. G., Mathalon, D. H., Turner, J., Glover, G. H., et al. (2008b). Test-retest and between-site reliability in a multicenter fMRI study. [Comparative Study Research Support, N.I.H., Extramural Validation Studies]. Human Brain Mapping, 29(8), 958–972. doi:10.1002/hbm.20440.PubMedCrossRefGoogle Scholar
  45. Glover, G., Mueller, B., Van Erp, T., Liu, T., Greve, D., Voyvodic, J., et al. (2012). Function Biomedical Informatics Research Network Recommendations for Prospective Multi-Center Functional Neuroimaging Studies. Journal of Magnetic Resonance Imaging, 36, 39–54. PMC Journal - In Process.PubMedCrossRefGoogle Scholar
  46. Goldman, A. L., Pezawas, L., Mattay, V. S., Fischl, B., Verchinski, B. A., Chen, Q., et al. (2009). Widespread reductions of cortical thickness in schizophrenia and spectrum disorders and evidence of heritability. [Research Support, N.I.H., Extramural Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. Archives of General Psychiatry, 66(5), 467–477. doi:10.1001/archgenpsychiatry.2009.24.PubMedCrossRefGoogle Scholar
  47. Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 32(1), 180–194. doi:10.1016/j.neuroimage.2006.02.051.PubMedCrossRefGoogle Scholar
  48. *He, H., Sui, J., Yu, Q., Turner, J., Ho, B. C., et al. (2012), Altered small-world brain networks in Schizophrenia patients during working memory performance. PLoS ONE 7(6):e38195 doi:10.1371/journal.pone.0038195.
  49. Head, D., Snyder, A. Z., Girton, L. E., Morris, J. C., & Buckner, R. L. (2005). Frontal-hippocampal double dissociation between normal aging and Alzheimer’s disease. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Cerebral Cortex, 15(6), 732–739. doi:10.1093/cercor/bhh174.PubMedCrossRefGoogle Scholar
  50. Health, N. I. O. M. (1976). Abnormal Involuntary Movement Scale, ECDEU Assessment Manual for Psychopharmacology: Revised, US Department of Health, Education and Welfare, Public Health Service, Alcohol, Drug Abuse and Mental Health Administration, NIMH Psychopharmacology Research Branch, Division of Extramural Research Programs, 534–7, (DHEW publication number ADM 76-338).Google Scholar
  51. Honea, R., Crow, T. J., Passingham, D., & Mackay, C. E. (2005). Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies. [Comparative Study Meta-Analysis Research Support, Non-U.S. Gov’t Review]. The American Journal of Psychiatry, 162(12), 2233–2245. doi:10.1176/appi.ajp.162.12.2233.PubMedCrossRefGoogle Scholar
  52. Huettel, S. A., Song, A. W., & McCarthy, G. (2009). Functional Magnetic Resonance Imaging (Secondth ed.). Sunderland: Sinauer Associates Publishers.Google Scholar
  53. Jovicich, J., Czanner, S., Greve, D., Haley, E., van der Kouwe, A., Gollub, R., et al. (2006). Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. [Research Support, N.I.H., Extramural]. NeuroImage, 30(2), 436–443. doi:10.1016/j.neuroimage.2005.09.046.PubMedCrossRefGoogle Scholar
  54. Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., et al. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: Reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 46(1), 177–192. doi:10.1016/j.neuroimage.2009.02.010.PubMedCrossRefGoogle Scholar
  55. *Karageorgiou, E., Schulz, S. C., Gollub, R. L., Andreasen, N. C., Ho, B. C., Lauriello, J., et al. (2011). Neuropsychological testing and structural magnetic resonance imaging as diagnostic biomarkers early in the course of schizophrenia and related psychoses. [Clinical Trial Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Validation Studies]. Neuroinformatics, 9(4), 321–333, doi:10.1007/s12021-010-9094-6.
  56. Kiehl, K. A., & Liddle, P. F. (2001). An event-related functional magnetic resonance imaging study of an auditory oddball task in schizophrenia. Schizophrenia Research, 48(2–3), 159–171.PubMedCrossRefGoogle Scholar
  57. Kiehl, K. A., Stevens, M. C., Celone, K., Kurtz, M., & Krystal, J. H. (2005a). Abnormal hemodynamics in schizophrenia during an auditory oddball task. [Comparative Stud Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]. Biological Psychiatry, 57(9), 1029–1040. doi:10.1016/j.biopsych.2005.01.035.PubMedCrossRefGoogle Scholar
  58. Kiehl, K. A., Stevens, M. C., Laurens, K. R., Pearlson, G., Calhoun, V. D., & Liddle, P. F. (2005b). An adaptive reflexive processing model of neurocognitive function: supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. [Research Support, Non-U.S. Gov’t]. NeuroImage, 25(3), 899–915. doi:10.1016/j.neuroimage.2004.12.035.PubMedCrossRefGoogle Scholar
  59. *Kim, D. I., Manoach, D. S., Mathalon, D. H., Turner, J. A., Mannell, M., Brown, G. G., et al. (2009a). Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 30(11), 3795–3811, doi:10.1002/hbm.20807.
  60. *Kim, D. I., Mathalon, D. H., Ford, J. M., Mannell, M., Turner, J. A., Brown, G. G., et al. (2009b). Auditory oddball deficits in schizophrenia: an independent component analysis of the fMRI multisite function BIRN study. [Research Support, N.I.H., Extramural]. Schizophrenia Bulletin, 35(1), 67–81, doi:10.1093/schbul/sbn133.
  61. *Kim, D. I., Sui, J., Rachakonda, S., White, T., Manoach, D. S., Clark, V. P., et al. (2010). Identification of imaging biomarkers in schizophrenia: a coefficient-constrained independent component analysis of the mind multi-site schizophrenia study. [Multicenter Study Research Support, N.I.H., Extramural]. Neuroinformatics, 8(4), 213–229, doi:10.1007/s12021-010-9077-7.
  62. Kuperberg, G. R., Broome, M. R., McGuire, P. K., David, A. S., Eddy, M., Ozawa, F., et al. (2003). Regionally localized thinning of the cerebral cortex in schizophrenia. [Comparative Study Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Archives of General Psychiatry, 60(9), 878–888. doi:10.1001/archpsyc.60.9.878.PubMedCrossRefGoogle Scholar
  63. Le Bihan, D., Poupon, C., Amadon, A., & Lethimonnier, F. (2006). Artifacts and pitfalls in diffusion MRI. [Review]. Journal of Magnetic Resonance Imaging: JMRI, 24(3), 478–488. doi:10.1002/jmri.20683.PubMedCrossRefGoogle Scholar
  64. Liu, J., Pearlson, G., Windemuth, A., Ruano, G., Perrone-Bizzozero, N. I., & Calhoun, V. (2009). Combining fMRI and SNP data to investigate connections between brain function and genetics using parallel ICA. Human Brain Mapping, 30(1), 241–255. doi:10.1002/hbm.20508.PubMedCrossRefGoogle Scholar
  65. Manoach, D. S., Press, D. Z., Thangaraj, V., Searl, M. M., Goff, D. C., Halpern, E., et al. (1999). Schizophrenic subjects activate dorsolateral prefrontal cortex during a working memory task, as measured by fMRI. [Research Support, Non-U.S. Gov’t]. Biological Psychiatry, 45(9), 1128–1137.PubMedCrossRefGoogle Scholar
  66. Manoach, D. S., Gollub, R. L., Benson, E. S., Searl, M. M., Goff, D. C., Halpern, E., et al. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. [Research Support, Non-U.S. Gov’t]. Biological Psychiatry, 48(2), 99–109.PubMedCrossRefGoogle Scholar
  67. *Michael, A.M., Baum, S.A., Fries, J.F., Ho, B.C., Pierson, R.K., Andreasen, N.C., et al. (2009a). A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 30(8), 2512–2529, doi:10.1002/hbm.20691.
  68. *Michael, A. M., Baum, S. A., Fries, J. F., Ho, B. C., Pierson, R. K., Andreasen, N.C., et al. (2009b). A method to fuse fMRI tasks through spatial correlations: applied to schizophrenia. Hum Brain Mapping, 30(8), 2512–2529, doi:10.1002/hbm.20691.
  69. *Michael, A. M., Baum, S. A., White, T., Demirci, O., Andreasen, N. C., Segall, J. M., et al. (2010). Does function follow form?: methods to fuse structural and functional brain images show decreased linkage in schizophrenia. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 49(3), 2626–2637, doi:10.1016/j.neuroimage.2009.08.056.
  70. *Michael, A. M., King, M. D., Ehrlich, S., Pearlson, G., White, T., Holt, D. J., et al. (2011). A Data-Driven Investigation of Gray Matter-Function Correlations in Schizophrenia during a Working Memory Task. Frontiers in Human Neuroscience, 5, 71, doi:10.3389/fnhum.2011.00071.
  71. Miller, E. (1990). California Computerized Assessment Battery (CalCAP). Norland Software.Google Scholar
  72. Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., et al. (2005a). The Alzheimer’s disease neuroimaging initiative. [Research Support, N.I.H., Extramural Review]. Neuroimaging Clinics of North America, 15(4), 869–877. doi:10.1016/j.nic.2005.09.008. xi–xii.PubMedCrossRefGoogle Scholar
  73. Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C. R., Jagust, W., et al. (2005b). Ways toward an early diagnosis in Alzheimer’s disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI). Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 1(1), 55–66. doi:10.1016/j.jalz.2005.06.003.CrossRefGoogle Scholar
  74. Muller, J. L., Roder, C., Schuierer, G., & Klein, H. E. (2002). Subcortical overactivation in untreated schizophrenic patients: a functional magnetic resonance image finger-tapping study. Psychiatry and Clinical Neurosciences, 56(1), 77–84. doi:10.1046/j.1440-1819.2002.00932.x.PubMedCrossRefGoogle Scholar
  75. Narr, K. L., Bilder, R. M., Toga, A. W., Woods, R. P., Rex, D. E., Szeszko, P. R., et al. (2005). Mapping cortical thickness and gray matter concentration in first episode schizophrenia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Cerebral Cortex, 15(6), 708–719. doi:10.1093/cercor/bhh172.PubMedCrossRefGoogle Scholar
  76. Navari, S., & Dazzan, P. (2009). Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. [Comparative Study Review]. Psychological Medicine, 39(11), 1763–1777. doi:10.1017/S0033291709005315.PubMedCrossRefGoogle Scholar
  77. Nelson, M. D., Saykin, A. J., Flashman, L. A., & Riordan, H. J. (1998). Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. [Comparative Study Meta-Analysis Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Archives of General Psychiatry, 55(5), 433–440.PubMedCrossRefGoogle Scholar
  78. Nesvag, R., Lawyer, G., Varnas, K., Fjell, A. M., Walhovd, K. B., Frigessi, A., et al. (2008). Regional thinning of the cerebral cortex in schizophrenia: effects of diagnosis, age and antipsychotic medication. [Comparative Study Research Support, Non-U.S. Gov’t]. Schizophrenia Research, 98(1–3), 16–28. doi:10.1016/j.schres.2007.09.015.PubMedCrossRefGoogle Scholar
  79. O’Brien, L. M., Ziegler, D. A., Deutsch, C. K., Kennedy, D. N., Goldstein, J. M., Seidman, L. J., et al. (2006). Adjustment for whole brain and cranial size in volumetric brain studies: a review of common adjustment factors and statistical methods. Harvard Review of Psychiatry, 14(3), 141–151. doi:10.1080/10673220600784119.PubMedCrossRefGoogle Scholar
  80. Potkin, S. G., & Ford, J. M. (2009). Widespread cortical dysfunction in schizophrenia: the fBIRN imaging consortium. [Review]. Schizophrenia Bulletin, 35(1), 15–18. doi:10.1093/schbul/sbn159.PubMedCrossRefGoogle Scholar
  81. Potkin, S. G., Turner, J. A., Brown, G. G., McCarthy, G., Greve, D. N., Glover, G. H., et al. (2009). Working memory and DLPFC inefficiency in schizophrenia: the fBIRN study. [Multicenter Study Research Support, N.I.H., Extramural]. Schizophrenia Bulletin, 35(1), 19–31. doi:10.1093/schbul/sbn162.PubMedCrossRefGoogle Scholar
  82. Ragland, J. D., Yoon, J., Minzenberg, M. J., & Carter, C. S. (2007). Neuroimaging of cognitive disability in schizophrenia: search for a pathophysiological mechanism. [Review]. International Review of Psychiatry, 19(4), 417–427. doi:10.1080/09540260701486365.PubMedCrossRefGoogle Scholar
  83. Reitan, R. (1958). Validity of the trail making test as indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.Google Scholar
  84. Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: a robust approach. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 53(4), 1181–1196. doi:10.1016/j.neuroimage.2010.07.020.PubMedCrossRefGoogle Scholar
  85. Rimol, L. M., Hartberg, C. B., Nesvag, R., Fennema-Notestine, C., Hagler, D. J., Jr., Pung, C. J., et al. (2010). Cortical thickness and subcortical volumes in schizophrenia and bipolar disorder. [Research Support, Non-U.S. Gov’t]. Biological Psychiatry, 68(1), 41–50. doi:10.1016/j.biopsych.2010.03.036.PubMedCrossRefGoogle Scholar
  86. Rimol, L. M., Nesvag, R., Hagler, D. J., Jr., Bergmann, O., Fennema-Notestine, C., Hartberg, C. B., et al. (2012). Cortical volume, surface area, and thickness in schizophrenia and bipolar disorder. [Research Support, Non-U.S. Gov’t]. Biological Psychiatry, 71(6), 552–560. doi:10.1016/j.biopsych.2011.11.026.PubMedCrossRefGoogle Scholar
  87. Risacher, S. L., Saykin, A. J., West, J. D., Shen, L., Firpi, H. A., & McDonald, B. C. (2009). Baseline MRI predictors of conversion from MCI to probable AD in the ADNI cohort. [Multicenter Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Current Alzheimer Research, 6(4), 347–361.PubMedCrossRefGoogle Scholar
  88. *Roffman, J. L., Gollub, R. L., Calhoun, V. D., Wassink, T. H., Weiss, A. P., Ho, B. C., et al. (2008). MTHFR 677C – > T genotype disrupts prefrontal function in schizophrenia through an interaction with COMT 158Val – > Met. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 105(45), 17573–17578, doi:10.1073/pnas.0803727105.
  89. Ruff, R. M., & Parker, S. B. (1993). Gender- and age-specific changes in motor speed and eye-hand coordination in adults: normative values for the Finger Tapping and Grooved Pegboard Tests. Perceptual and Motor Skills, 76(3 Pt 2), 1219–1230.PubMedCrossRefGoogle Scholar
  90. Schultz, C. C., Koch, K., Wagner, G., Roebel, M., Schachtzabel, C., Gaser, C., et al. (2010). Reduced cortical thickness in first episode schizophrenia. [Research Support, Non-U.S. Gov’t]. Schizophrenia Research, 116(2–3), 204–209. doi:10.1016/j.schres.2009.11.001.PubMedCrossRefGoogle Scholar
  91. Scott, A., Courtney, W., Wood, D., de la Garza, R., Lane, S., King, M., et al. (2011). COINS: An Innovative Informatics and Neuroimaging Tool Suite Built for Large Heterogeneous Datasets. Frontiers in Neuroinformatics, 5, 33. doi:10.3389/fninf.2011.00033.PubMedCrossRefGoogle Scholar
  92. *Segall, J. M., Turner, J. A., van Erp, T. G., White, T., Bockholt, H. J., Gollub, R. L., et al. (2009). Voxel-based morphometric multisite collaborative study on schizophrenia. [Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Schizophrenia Bulletin, 35(1), 82–95, doi:10.1093/schbul/sbn150.
  93. Segonne, F., Grimson, E., & Fischl, B. (2005). A genetic algorithm for the topology correction of cortical surfaces. [Evaluation Studies]. Information Processing in Medical Imaging : Proceedings of the … Conference, 19, 393–405.CrossRefGoogle Scholar
  94. Shallice, T., (1982), Specific impairments of planning. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 298 (1089), 199–209. doi:10.1098/rstb.1982.0082.
  95. Shen, L., Qi, Y., Kim, S., Nho, K., Wan, J., Risacher, S. L., et al. (2010). Sparse bayesian learning for identifying imaging biomarkers in AD prediction. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Medical Image Computing and Computer-Assisted Intervention: MICCAI … International Conference on Medical Image Computing and Computer-Assisted Intervention, 13(Pt 3), 611–618.Google Scholar
  96. Simpson, G. M., & Angus, J. W. (1970). A rating scale for extrapyramidal side effects. [Clinical Trial Comparative Study Controlled Clinical Trial]. Acta Psychiatrica Scandinavica. Supplementum, 212, 11–19.PubMedCrossRefGoogle Scholar
  97. Sivan, A. B. (1992). Benton Visual Retention Test (5th ed.). San Antonio: The Psychological Corporation.Google Scholar
  98. Smieskova, R., Fusar-Poli, P., Allen, P., Bendfeldt, K., Stieglitz, R. D., Drewe, J., et al. (2009). The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?–a systematic review. [Comparative Study Research Support, Non-U.S. Gov’t Review]. Current Pharmaceutical Design, 15(22), 2535–2549.PubMedCrossRefGoogle Scholar
  99. *Sponheim, S. R., Jung, R. E., Seidman, L. J., Mesholam-Gately, R. I., Manoach, D.S., O’Leary, D.S., et al. (2010). Cognitive deficits in recent-onset and chronic schizophrenia. [Research Support, U.S. Gov’t, Non-P.H.S.]. Journal of psychiatric research, 44(7), 421–428, doi:10.1016/j.jpsychires.2009.09.010.
  100. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.PubMedCrossRefGoogle Scholar
  101. Stonnington, C. M., Tan, G., Kloppel, S., Chu, C., Draganski, B., Jack, C. R., Jr., et al. (2008). Interpreting scan data acquired from multiple scanners: a study with Alzheimer’s disease. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 39(3), 1180–1185. doi:10.1016/j.neuroimage.2007.09.066.PubMedCrossRefGoogle Scholar
  102. *Sui, J., Adali, T., Pearlson, G. D., & Calhoun, V. D. (2009a). An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques. Neuroimage, 46(1), 73–86, doi:10.1016/j.neuroimage.2009.01.026.Google Scholar
  103. *Sui, J., Adali, T., Pearlson, G. D., Clark, V. P., & Calhoun, V.D. (2009b). A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework. Human Brain Mapping, 30(9), 2953–2970, doi:10.1002/hbm.20721.Google Scholar
  104. *Sui, J., Adali, T., Pearlson, G., Yang, H., Sponheim, S. R., White, T., et al. (2010). A CCA + ICA based model for multi-task brain imaging data fusion and its application to schizophrenia. [Comparative Study Research Support, N.I.H., Extramural]. NeuroImage, 51(1), 123–134, doi:10.1016/j.neuroimage.2010.01.069.
  105. *Sui, J., Pearlson, G., Caprihan, A., Adali, T., Kiehl, K. A., Liu, J., et al. (2011). Discriminating schizophrenia and bipolar disorder by fusing fMRI and DTI in a multimodal CCA + joint ICA model. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. NeuroImage, 57(3), 839–855, doi:10.1016/j.neuroimage.2011.05.055.
  106. *Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D. (2012a). A review of multivariate methods for multimodal fusion of brain imaging data. [Comparative Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Journal of neuroscience methods, 204(1), 68–81, doi:10.1016/j.jneumeth.2011.10.031.
  107. *Sui, J., He, H., Pearlson, G. D., Adali, T., Kiehl, K. A., Yu, Q., et al. (2012b). Three-way (N-way) fusion of brain imaging data based on mCCA + jICA and its application to discriminating schizophrenia. NeuroImage, 66C, 119–132, doi:10.1016/j.neuroimage.2012.10.051.
  108. Tabangin, M. E., Woo, J. G., & Martin, L. J. (2009). The effect of minor allele frequency on the likelihood of obtaining false positives. BMC Proceedings, 3(Suppl 7), S41. doi:10.1186/1753-6561-3-S7-S41.PubMedCrossRefGoogle Scholar
  109. Tost, H., Meyer-Lindenberg, A., Klein, S., Schmitt, A., Hohn, F., Tenckhoff, A., et al. (2006). D2 antidopaminergic modulation of frontal lobe function in healthy human subjects. [Clinical Trial]. Biological Psychiatry, 60(11), 1196–1205. doi:10.1016/j.biopsych.2006.04.014.PubMedCrossRefGoogle Scholar
  110. van der Kouwe, A. J., Benner, T., & Dale, A. M. (2006). Real-time rigid body motion correction and shimming using cloverleaf navigators. [Evaluation Studies Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine: Official Journal of the Society of Magnetic Resonance in Medicine/Society of Magnetic Resonance in Medicine, 56(5), 1019–1032. doi:10.1002/mrm.21038.
  111. Walton, E., Turner, J. Gollub, R. L., Manoach, D. S., Yendiki, A., Ho, B. C., et al. (2012) Cumulative genetic risk and prefrontal activity in patients with Schizophrenia, Schizophrenia Bulletin, 39(3), 703–711, doi:10.1093/schbul/sbr190.
  112. Watson, D. R., Bai, F., Barrett, S. L., Turkington, A., Rushe, T. M., Mulholland, C. C., et al. (2012). Structural changes in the hippocampus and amygdala at first episode of psychosis. [Comparative Study Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 6(1), 49–60. doi:10.1007/s11682-011-9141-4.PubMedCrossRefGoogle Scholar
  113. Wechsler, D. (1997a). Wechsler Adult Intelligence Scale (3rd ed.). San Antonio: Psychological Corporation.Google Scholar
  114. Wechsler, D. (1997b). Wechsler Memory Scale (3rd ed.). San Antonio: Psychological Corporation.Google Scholar
  115. White, T., Nelson, M., & Lim, K. O. (2008). Diffusion tensor imaging in psychiatric disorders. [Research Support, N.I.H., Extramural Review]. Topics in Magnetic Resonance Imaging: TMRI, 19(2), 97–109. doi:10.1097/RMR.0b013e3181809f1e.PubMedCrossRefGoogle Scholar
  116. White, T., Schmidt, M., & Karatekin, C. (2009). White matter ‘potholes’ in early-onset schizophrenia: a new approach to evaluate white matter microstructure using diffusion tensor imaging. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Psychiatry Research, 174(2), 110–115. doi:10.1016/j.pscychresns.2009.04.014.PubMedCrossRefGoogle Scholar
  117. *White, T., Magnotta, V.A., Bockholt, H.J., Williams, S., Wallace, S., Ehrlich, S., et al. (2011). Global white matter abnormalities in schizophrenia: a multisite diffusion tensor imaging study. [Comparative Study Evaluation Studies Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Schizophrenia Bulletin, 37(1), 222–232, doi:10.1093/schbul/sbp088.
  118. *White, T., Ehrlich, S., Ho, B. C., Manoach, D. S., Caprihan, A., Schulz, S. C., et al. (2012). Spatial characteristics of white matter abnormalities in Schizophrenia. Schizophrenia Bulletin, Sep 16, doi:10.1093/schbul/sbs106.
  119. Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284. doi:10.1073/pnas.0809141106.PubMedCrossRefGoogle Scholar
  120. Wilkinson, G. (1993). Wide Range Achievement Test (3rd ed.). Wilmington: Wide Range, Inc.Google Scholar
  121. Wright, I. C., Rabe-Hesketh, S., Woodruff, P. W., David, A. S., Murray, R. M., & Bullmore, E. T. (2000). Meta-analysis of regional brain volumes in schizophrenia. [Comparative Study Meta-Analysis Research Support, Non-U.S. Gov’t]. The American Journal of Psychiatry, 157(1), 16–25.PubMedGoogle Scholar
  122. Xu, L., Pearlson, G., & Calhoun, V. D. (2009). Joint source based morphometry identifies linked gray and white matter group differences. NeuroImage, 44(3), 777–789. doi:10.1016/j.neuroimage.2008.09.051.PubMedCrossRefGoogle Scholar
  123. Yang, H., Liu, J., Sui, J., Pearlson, G. D., & Calhoun, V. D. (2010). A Hybrid Machine Learning Method for Fusing fMRI and Genetic Data: Combining both Improves Classification of Schizophrenia. Frontiers in Human Neuroscience, 4, 192. doi:10.3389/fnhum.2010.00192.PubMedCrossRefGoogle Scholar
  124. *Yendiki, A., Greve, D. N., Wallace, S., Vangel, M., Bockholt, J., Mueller, B. A., et al. (2010). Multi-site characterization of an fMRI working memory paradigm: reliability of activation indices. NeuroImage, 53(1), 119–131, doi:10.1016/j.neuroimage.2010.02.084.
  125. *Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zollei, L., Augustinack, J., et al. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5, 23, doi:10.3389/fninf.2011.00023.
  126. Yu, Q., Sui, J., Rachakonda, S., He, H., Pearlson, G., & Calhoun, V. D. (2011). Altered small-world brain networks in temporal lobe in patients with schizophrenia performing an auditory oddball task. Frontiers in Systems Neuroscience, 5, 7. doi:10.3389/fnsys.2011.00007.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Randy L. Gollub
    • 1
    • 2
  • Jody M. Shoemaker
    • 3
  • Margaret D. King
    • 3
  • Tonya White
    • 4
    • 5
  • Stefan Ehrlich
    • 6
  • Scott R. Sponheim
    • 7
    • 8
  • Vincent P. Clark
    • 3
    • 11
  • Jessica A. Turner
    • 3
  • Bryon A. Mueller
    • 8
  • Vince Magnotta
    • 9
  • Daniel O’Leary
    • 10
  • Beng C. Ho
    • 10
  • Stefan Brauns
    • 6
    • 17
  • Dara S. Manoach
    • 1
    • 2
  • Larry Seidman
    • 16
  • Juan R. Bustillo
    • 15
  • John Lauriello
    • 13
  • Jeremy Bockholt
    • 10
    • 14
  • Kelvin O. Lim
    • 8
  • Bruce R. Rosen
    • 2
  • S. Charles Schulz
    • 8
  • Vince D. Calhoun
    • 3
    • 12
    • 15
  • Nancy C. Andreasen
    • 10
  1. 1.Department of PsychiatryMassachusetts General HospitalCharlestownUSA
  2. 2.Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalBostonUSA
  3. 3.The Mind Research NetworkAlbuquerqueUSA
  4. 4.Department of Child and Adolescent PsychiatryErasmus Medical CentreRotterdamNetherlands
  5. 5.Department of RadiologyErasmus Medical CentreRotterdamNetherlands
  6. 6.Department of Child and Adolescent PsychiatryUniversity of TechnologyDresdenGermany
  7. 7.Minneapolis VA Health Care SystemMinnesotaUSA
  8. 8.Department of PsychiatryUniversity of MinnesotaMinneapolisUSA
  9. 9.Department of RadiologyUniversity of IowaIowa CityUSA
  10. 10.Department of PsychiatryUniversity of IowaIowa CityUSA
  11. 11.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA
  12. 12.Department of Electrical and Computer EngineeringUniversity of New MexicoAlbuquerqueUSA
  13. 13.Department of PsychiatryUniversity of MissouriColumbiaUSA
  14. 14.Advanced Biomedical Informatics GroupLLCIowa CityUSA
  15. 15.Department of PsychiatryUniversity of New MexicoAlbuquerqueUSA
  16. 16.Massachusetts Mental Health Center Public Psychiatry DivisionBeth Israel Deaconess Medical CenterBostonUSA
  17. 17.Department of PsychiatryCharité University MedicineBerlinGermany

Personalised recommendations