Advertisement

Neuroinformatics

, Volume 11, Issue 3, pp 301–317 | Cite as

Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions

  • Xintao Hu
  • Dajiang Zhu
  • Peili Lv
  • Kaiming Li
  • Junwei Han
  • Lihong Wang
  • Dinggang Shen
  • Lei GuoEmail author
  • Tianming LiuEmail author
Original Article

Abstract

In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity sub-network scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rs-fMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures.

Keywords

DTI rs-fMRI Functional interaction Fine granularity MCI SZ 

Notes

Acknowledgements

T Liu was supported by the NIH K01 EB 006878, NIH R01 HL087923-03S2, NIH R01 DA033393, NSF CAREER Award IIS-1149260, and The University of Georgia start-up research funding. X Hu was supported by the National Science Foundation of China under Grant 61103061, the China Postdoctoral Science Foundation under Grant 20110490174, and Special Grade of the Financial Support from the China-Postdoctoral Science Foundation under grant 2012 T50819. J Han was supported by the National Science Foundation of China under Grant 61005018 and 91120005, and NPU-FFR-JC20104. L Wang was supported by the Paul B. Beeson Career Developmental Awards (K23-AG028982) and a National Alliance for Research in Schizophrenia and Depression Young Investigator Award. D Shen was supported by NIH R01 grants EB006733, EB008374, EB009634, and AG041721.

References

  1. Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos, I. S., Rosenwald, A., et al. (2000). Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature, 403(6769), 503–511.PubMedCrossRefGoogle Scholar
  2. Allen, M., & Williams, G. (2011). Consciousness, plasticity, and connectomics: the role of intersubjectivity in human cognition. Frontiers in Psychology, 2, 20. doi: 10.3389/fpsyg.2011.00020.PubMedCrossRefGoogle Scholar
  3. Andrews-Hanna, J. R., Snyder, A. Z., Vincent, J. L., Lustig, C., Head, D., Raichle, M. E., et al. (2007). Disruption of large-scale brain systems in advanced aging. Neuron, 56(5), 924–935.PubMedCrossRefGoogle Scholar
  4. Barabasi, A. L., Gulbahce, N., & Loscalzo, J. (2011). Network medicine: a network-based approach to human disease. Nature Reviews Genetics, 12(1), 56–68.PubMedCrossRefGoogle Scholar
  5. Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease. Current Opinion in Neurology, 22(4), 340–347.PubMedCrossRefGoogle Scholar
  6. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360(1457), 1001–1013.CrossRefGoogle Scholar
  7. Behrens, T. E., & Sporns, O. (2011). Human connectomics. Current Opinion in Neurobiology, 22(1), 144–153.PubMedCrossRefGoogle Scholar
  8. Bickel, S., & Scheffer, T. Multi-view clustering. In Brighton, United kingdom, 2004 (pp. 19–26, Proceedings—Fourth IEEE International Conference on Data Mining, ICDM 2004): IEEE Computer Society. doi: 10.1109/icdm.2004.10095.
  9. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.PubMedCrossRefGoogle Scholar
  10. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739.PubMedCrossRefGoogle Scholar
  11. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., & Hwang, D. U. (2006). Complex networks: Structure and dynamics. [Review]. Physics Reports-Review Section of Physics Letters, 424(4–5), 175–308.Google Scholar
  12. Bressler, S. L. (2003). Cortical coordination dynamics and the disorganization syndrome in schizophrenia. Neuropsychopharmacology, 28(Suppl 1), S35–S39.PubMedCrossRefGoogle Scholar
  13. Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: emerging methods and principles. Trends in Cognitive Science, 14(6), 277–290.CrossRefGoogle Scholar
  14. Buckner, R. L. (2010). Human functional connectivity: new tools, unresolved questions. Proceedings of the National Academy of Sciences of the United States of America, 107(24), 10769–10770.PubMedCrossRefGoogle Scholar
  15. Buldu, J. M., Bajo, R., Maestu, F., Castellanos, N., Leyva, I., Gil, P., et al. (2012). Reorganization of functional networks in mild cognitive impairment. PLoS One, 6(5), e19584.CrossRefGoogle Scholar
  16. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186–198.PubMedCrossRefGoogle Scholar
  17. Cai, X., Nie, F., Huang, H., & Kamangar, F. Heterogeneous image feature integration via multi-modal spectral clustering. In Colorado Springs, CO, United states, 2011 (pp. 1977–1984, Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition): IEEE Computer Society. doi: 10.1109/cvpr.2011.5995740.
  18. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A method for making group inferences from functional MRI data using independent component analysis. Human Brain Mapping, 14(3), 140–151.PubMedCrossRefGoogle Scholar
  19. Calhoun, V. D., Eichele, T., & Pearlson, G. (2009). Functional brain networks in schizophrenia: a review. Frontiers in Human Neuroscience, 3, 17.PubMedCrossRefGoogle Scholar
  20. Chang, C. C., & Lin, C. J. (2001). LIBSVM: a library for support vector machines. http://www.csie.ntu.edu.tw/cjlin/libsvm.
  21. Chung, F. (1997). Spectral graph theory: American Mathematical Society.Google Scholar
  22. Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., Moritz, C. H., et al. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR. American Journal of Neuroradiology, 21(9), 1636–1644.PubMedGoogle Scholar
  23. Cordes, D., Haughton, V., Carew, J. D., Arfanakis, K., & Maravilla, K. (2002). Hierarchical clustering to measure connectivity in fMRI resting-state data. Magnetic Resonance Imaging, 20(4), 305–317.PubMedCrossRefGoogle Scholar
  24. Courchesne, E., & Pierce, K. (2005). Why the frontal cortex in autism might be talking only to itself: local over-connectivity but long-distance disconnection. Current Opinion in Neurobiology, 15(2), 225–230.PubMedCrossRefGoogle Scholar
  25. Dai, Z., Yan, C., Wang, Z., Wang, J., Xia, M., Li, K., et al. (2011). Discriminative analysis of early Alzheimer’s disease using multi-modal imaging and multi-level characterization with multi-classifier (M3). NeuroImage, 59(3), 2187–2195.PubMedCrossRefGoogle Scholar
  26. Damoiseaux, J. S., Rombouts, S. A., Barkhof, F., Scheltens, P., Stam, C. J., Smith, S. M., et al. (2006). Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13848–13853.PubMedCrossRefGoogle Scholar
  27. De Luca, M., Smith, S., De Stefano, N., Federico, A., & Matthews, P. M. (2005). Blood oxygenation level dependent contrast resting state networks are relevant to functional activity in the neocortical sensorimotor system. Experimental Brain Research, 167(4), 587–594.CrossRefGoogle Scholar
  28. Dickerson, B. C., & Sperling, R. A. (2009). Large-scale functional brain network abnormalities in Alzheimer’s disease: insights from functional neuroimaging. Behavioural Neurology, 21(1), 63–75.PubMedGoogle Scholar
  29. Fillard, P., & Gerig, G. (2003). Analysis tool for diffusion tensor MRI. Paper presented at the Medical Image Computing and Computer-Assisted Intervention—Miccai 2003, Pt 2, Berlin.Google Scholar
  30. Fornito, A., Zalesky, A., Pantelis, C., & Bullmore, E. T. (2012). Schizophrenia, neuroimaging and connectomics. NeuroImage, 62(4), 2296–2314.PubMedCrossRefGoogle Scholar
  31. Fox, M. D., & Greicius, M. (2010). Clinical applications of resting state functional connectivity. Frontiers in Systems Neuroscience, 4, 19.PubMedGoogle Scholar
  32. Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.PubMedCrossRefGoogle Scholar
  33. Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30(2), 115–125.PubMedCrossRefGoogle Scholar
  34. Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78.PubMedCrossRefGoogle Scholar
  35. Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 2035–2040.PubMedCrossRefGoogle Scholar
  36. Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., et al. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20.PubMedCrossRefGoogle Scholar
  37. Hu, X., Guo, L., Zhang, D., Li, K., Zhang, T., Lv, J., et al. (2011). Assessing the dynamics on functional brain networks using spectral graphy theory. The 8th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI’11, Chicago, IL, United states.Google Scholar
  38. Iachini, I., Iavarone, A., Senese, V. P., Ruotolo, F., & Ruggiero, G. (2009). Visuospatial memory in healthy elderly, AD and MCI: a review. Current Aging Science, 2(1), 43–59.PubMedGoogle Scholar
  39. Kemp, C., & Tenenbaum, J. B. (2008). The discovery of structural form. Proceedings of the National Academy of Sciences of the United States of America, 105(31), 10687–10692.PubMedCrossRefGoogle Scholar
  40. Kennedy, D. N. (2010). Making Connections in the Connectome Era. Neuroinformatics, 8(2), 61–62.PubMedCrossRefGoogle Scholar
  41. Kumar, A., & Daume Iii, H. A co-training approach for multi-view spectral clustering. In Bellevue, WA, United states, 2011 (pp. 393–400, Proceedings of the 28th International Conference on Machine Learning, ICML 2011): Association for Computing MachineryGoogle Scholar
  42. Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., & Raichle, M. E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4489–4494.PubMedCrossRefGoogle Scholar
  43. Li, S. J., Li, Z., Wu, G., Zhang, M. J., Franczak, M., & Antuono, P. G. (2002). Alzheimer Disease: evaluation of a functional MR imaging index as a marker. Radiology, 225(1), 253–259.PubMedCrossRefGoogle Scholar
  44. Li, K., Guo, L., Li, G., Nie, J., Faraco, C., Zhao, Q., et al. (2010). Cortical surface based identification of brain networks using high spatial resolution resting state fMRI data. The 7th IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2010, Rotterdam, Netherlands,Google Scholar
  45. Li, H., Xue, Z., Ellmore, T. M., Frye, R. E., & Wong, S. T. (2012a). Network-based analysis reveals stronger local diffusion-based connectivity and different correlations with oral language skills in brains of children with high functioning autism spectrum disorders. Human Brain Mapping. doi: 10.1002/hbm.22185.
  46. Li, K., Zhu, D., Guo, L., Li, Z., Lynch, M. E., Coles, C., et al. (2012b). Connectomics Signatures of Prenatal Cocaine Exposure Affected Adolescent Brains. Human Brain Mapping, In press.Google Scholar
  47. Liang, P., Wang, Z., Yang, Y., Jia, X., & Li, K. (2011). Functional disconnection and compensation in mild cognitive impairment: evidence from DLPFC connectivity using resting-state fMRI. PLoS One, 6(7), e22153.PubMedCrossRefGoogle Scholar
  48. Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5(3), 189–202.PubMedCrossRefGoogle Scholar
  49. Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648–1656.PubMedCrossRefGoogle Scholar
  50. Lohmann, G., & Bohn, S. (2002). Using replicator dynamics for analyzing fMRI data of the human brain. [Article; Proceedings Paper]. IEEE Transactions on Medical Imaging, 21(5), 485–492.PubMedCrossRefGoogle Scholar
  51. Luce, R. D., & Perry, A. D. (1949). A method of matrix analysis of group structure. Psychometrika, 14(2), 95–116.PubMedCrossRefGoogle Scholar
  52. Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. Journal of Neuroscience, 30(28), 9477–9487.PubMedCrossRefGoogle Scholar
  53. Martinez, A. M., & Kak, A. C. (2001). PCA versus LDA. [Article]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 23(2), 228–233.CrossRefGoogle Scholar
  54. Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews Neuroscience, 3(8), 606–616.PubMedGoogle Scholar
  55. Qi, Z., Wu, X., Wang, Z., Zhang, N., Dong, H., Yao, L., et al. (2010). Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage, 50(1), 48–55.PubMedCrossRefGoogle Scholar
  56. Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.PubMedCrossRefGoogle Scholar
  57. Reiman, E. M., & Jagust, W. J. (2011). Brain imaging in the study of Alzheimer’s disease. NeuroImage, 61(2), 505–516.PubMedCrossRefGoogle Scholar
  58. Salvador, R., Suckling, J., Coleman, M. R., Pickard, J. D., Menon, D., & Bullmore, E. (2005). Neurophysiological architecture of functional magnetic resonance images of human brain. Cerebral Cortex, 15(9), 1332–1342.PubMedCrossRefGoogle Scholar
  59. Schneider, F., Habel, U., Reske, M., Kellermann, T., Stocker, T., Shah, N. J., et al. (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophrenia Research, 89(1–3), 198–210.PubMedCrossRefGoogle Scholar
  60. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.PubMedCrossRefGoogle Scholar
  61. Smith, S. M., Fox, P. T., Miller, K. L., Glahn, D. C., Fox, P. M., Mackay, C. E., et al. (2009). Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences of the United States of America, 106(31), 13040–13045.PubMedCrossRefGoogle Scholar
  62. Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., et al. (2008). Brain spontaneous functional connectivity and intelligence. NeuroImage, 41(3), 1168–1176.PubMedCrossRefGoogle Scholar
  63. Sorg, C., Riedl, V., Muhlau, M., Calhoun, V. D., Eichele, T., Laer, L., et al. (2007). Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 104(47), 18760–18765.PubMedCrossRefGoogle Scholar
  64. Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224, 109–125.PubMedCrossRefGoogle Scholar
  65. Staffen, W., Ladurner, G., Holler, Y., Bergmann, J., Aichhorn, M., Golaszewski, S., et al. (2011). Brain activation disturbance for target detection in patients with mild cognitive impairment: an fMRI study. Neurobiol Aging, 33(5), 1002 e1001–1002 e1016.Google Scholar
  66. Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100.PubMedCrossRefGoogle Scholar
  67. Thirion, B., Dodel, S., & Poline, J. B. (2006). Detection of signal synchronizations in resting-state fMRI datasets. NeuroImage, 29(1), 321–327.PubMedCrossRefGoogle Scholar
  68. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.PubMedCrossRefGoogle Scholar
  69. Van de Ven, V. G., Formisano, E., Prvulovic, D., Roeder, C. H., & Linden, D. E. J. (2004). Functional connectivity as revealed by spatial independent component analysis of fMRI measurements during rest. Human Brain Mapping, 22(3), 165–178.PubMedCrossRefGoogle Scholar
  70. Van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20(8), 519–534.PubMedCrossRefGoogle Scholar
  71. Van den Heuvel, M., Mandl, R., & Hulshoff Pol, H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3(4), e2001.PubMedCrossRefGoogle Scholar
  72. Vannini, P., Almkvist, O., Dierks, T., Lehmann, C., & Wahlund, L. O. (2007). Reduced neuronal efficacy in progressive mild cognitive impairment: a prospective fMRI study on visuospatial processing. Psychiatry Research, 156(1), 43–57.PubMedCrossRefGoogle Scholar
  73. Verma, M., & Howard, R. J. (2012). Semantic memory and language dysfunction in early Alzheimer’s disease: a review. International Journal of Geriatric Psychiatry. doi: 10.1002/gps.3766.
  74. Vincent, J. L., Patel, G. H., Fox, M. D., Snyder, A. Z., Baker, J. T., Van Essen, D. C., et al. (2007). Intrinsic functional architecture in the anaesthetized monkey brain. Nature, 447(7140), 83–86.PubMedCrossRefGoogle Scholar
  75. Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., et al. (2007). Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978.PubMedCrossRefGoogle Scholar
  76. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59(3), 2045–2056.PubMedCrossRefGoogle Scholar
  77. Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 106(4), 1279–1284.PubMedCrossRefGoogle Scholar
  78. Woodard, J. L., Seidenberg, M., Nielson, K. A., Antuono, P., Guidotti, L., Durgerian, S., et al. (2009). Semantic memory activation in amnestic mild cognitive impairment. Brain, 132(Pt 8), 2068–2078.PubMedCrossRefGoogle Scholar
  79. Wu, K., Taki, Y., Sato, K., Sassa, Y., Inoue, K., Goto, R., et al. (2012). The overlapping community structure of structural brain network in young healthy individuals. PLoS One, 6(5), e19608.CrossRefGoogle Scholar
  80. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400.PubMedCrossRefGoogle Scholar
  81. Zang, Y. F., He, Y., Zhu, C. Z., Cao, Q. J., Sui, M. Q., Liang, M., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain & Development, 29(2), 83–91.CrossRefGoogle Scholar
  82. Zhang, D., & Raichle, M. E. (2010). Disease and the brain’s dark energy. Nature Reviews. Neurology, 6(1), 15–28.PubMedCrossRefGoogle Scholar
  83. Zhang, T., Guo, L., Li, K., Jing, C., Yin, Y., Zhu, D., et al. (2011). Predicting Functional Cortical ROIs via DTI-Derived Fiber Shape Models. Cerebral Cortex, 22(4), 854–864.PubMedCrossRefGoogle Scholar
  84. Zhu, D., Li, K., Faraco, C. C., Deng, F., Zhang, D., Guo, L., et al. (2012a). Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage, 59(2), 1382–1393.CrossRefGoogle Scholar
  85. Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2012b). DICCCOL: Dense Individualized and Common Connectivity-based Cortical Landmarks. Cerebral Cortex. doi: 10.1093/cercor/bhs072.
  86. Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Xintao Hu
    • 1
  • Dajiang Zhu
    • 2
  • Peili Lv
    • 1
  • Kaiming Li
    • 1
    • 2
  • Junwei Han
    • 1
  • Lihong Wang
    • 3
  • Dinggang Shen
    • 4
  • Lei Guo
    • 1
    Email author
  • Tianming Liu
    • 2
    Email author
  1. 1.School of AutomationNorthwestern Polytechnical UniversityXi’anChina
  2. 2.Department of Computer Science and Bioimaging Research CenterThe University of GeorgiaAthensUSA
  3. 3.Brain Imaging and Analysis CenterDuke UniversityDurhamUSA
  4. 4.Department of RadiologyUNC Chapel HillChapel HillUSA

Personalised recommendations