Neuroinformatics

, Volume 11, Issue 2, pp 175–192 | Cite as

Interactions Between Pre-Processing and Classification Methods for Event-Related-Potential Classification

Best-Practice Guidelines for Brain-Computer Interfacing
Original Article

Abstract

Detecting event related potentials (ERPs) from single trials is critical to the operation of many stimulus-driven brain computer interface (BCI) systems. The low strength of the ERP signal compared to the noise (due to artifacts and BCI irrelevant brain processes) makes this a challenging signal detection problem. Previous work has tended to focus on how best to detect a single ERP type (such as the visual oddball response). However, the underlying ERP detection problem is essentially the same regardless of stimulus modality (e.g. visual or tactile), ERP component (e.g. P300 oddball response, or the error-potential), measurement system or electrode layout. To investigate whether a single ERP detection method might work for a wider range of ERP BCIs we compare detection performance over a large corpus of more than 50 ERP BCI datasets whilst systematically varying the electrode montage, spectral filter, spatial filter and classifier training methods. We identify an interesting interaction between spatial whitening and regularised classification which made detection performance independent of the choice of spectral filter low-pass frequency. Our results show that pipeline consisting of spectral filtering, spatial whitening, and regularised classification gives near maximal performance in all cases. Importantly, this pipeline is simple to implement and completely automatic with no expert feature selection or parameter tuning required. Thus, we recommend this combination as a “best-practice” method for ERP detection problems.

Keywords

EEG ERP BCI Decoding LDA Spatial filtering Spectral filtering 

References

  1. Bell, A.J., & Sejnowski, T.J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159. doi:10.1162/neco.1995.7.6.1129.PubMedCrossRefGoogle Scholar
  2. Birbaumer, N., Kubler, A., Ghanayim, N., Hinterberger, T., Perelmouter, J., Kaiser, J., Iversen, I., Kotchoubey, B., Neumann, N., Flor, H. (2000). The thought translation device (TTD) for completely paralyzed patients. IEEE Transactions on Rehabilitation Engineering, 8(2), 190–193. doi:10.1109/86.847812.PubMedCrossRefGoogle Scholar
  3. Blankertz, B., Muller, K.R., Krusienski, D.J., Schalk, G., Wolpaw, J.R., Schlogl, A., Pfurtscheller, G., Millan, J.R., Schroder, M., Birbaumer, N. (2006). The BCI competition III: validating alternative approaches to actual BCI problems. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 14(2), 153–159. doi:10.1109/TNSRE.2006.875642.PubMedCrossRefGoogle Scholar
  4. Blankertz, B., Tomioka, R., Lemm, S., Kawanabe, M., Muller, K.R. (2008). Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Processing Magazine, 25(1), 41–56. doi:10.1109/MSP.2008.4408441.CrossRefGoogle Scholar
  5. Blankertz, B., Lemm, S., Treder, M., Haufe, S., Müller, K. (2011). Single-trial analysis and classification of ERP components: a tutorial. NeuroImage, 56(2), 814–825. doi:10.1016/j.neuroimage.2010.06.048.PubMedCrossRefGoogle Scholar
  6. Bouchard, G., & Triggs, B. (2004). The tradeoff between generative and discriminative classifiers. In 16th IASC international symposium on computational statistics (COMPSTAT ‘04), Prague, Tcheque, Republique (pp. 721–728).Google Scholar
  7. Brown, R.G., & Hwang, P.Y.C. (1997). Introduction to random signals and applied Kalman filtering. Wiley, TK5102.5.B696 (Vol. 2). New York: Wiley.Google Scholar
  8. Brunner, C., Naeem, M., Leeb, R., Graimann, B., Pfurtscheller, G. (2007). Spatial filtering and selection of optimized components in four class motor imagery EEG data using independent components analysis. Pattern Recognition Letters, 28(8), 957–964. doi:10.1016/j.patrec.2007.01.002.CrossRefGoogle Scholar
  9. Christoforou, C., Haralick, R., Sajda, P., Parra, L.C. (2010). Second-order bilinear discriminant analysis. Journal of Machine Learning Research, 11, 665–685.Google Scholar
  10. Duda, R.O., Hart, P.E., Stork, D.G. (2000). Pattern classification (2nd ed.). Wiley-Interscience.Google Scholar
  11. Farquhar, J. (2009). A linear feature space for simultaneous learning of spatio-spectral filters in BCI. Neural Networks, 22(9), 1278–1285. doi:10.1016/j.neunet.2009.06.035.PubMedCrossRefGoogle Scholar
  12. Farwell, L.A., & Donchin, E. (1988). Talking off the top of your head: toward a mental prosthesis utilizing event-related brain potentials. Electroencephalography and Clinical Neurophysiology, 70(6), 510–523.PubMedCrossRefGoogle Scholar
  13. van Gerven, M., Farquhar, J., Schaefer, R., Vlek, R., Geuze, J., Nijholt, A., Ramsey, N., Haselager, P., Vuurpijl, L., Gielen, S., Desain, P. (2009). The brain–computer interface cycle. Journal of Neural Engineering, 6(4), 041,001. doi:10.1088/1741-2560/6/4/041001.CrossRefGoogle Scholar
  14. Hill, J., Farquhar, J., Martens, S., Bießmann, F., Schölkopf, B. (2008). Effects of stimulus type and of error-correcting code design on BCI speller performance. In Advances in neural information processing systems 21: 22nd Annual conference on neural information processing systems 2008 (pp. 665–672). Vancouver, BC: Corran.Google Scholar
  15. Hill, N.J., & Raths, C. (2007). New BCI approaches: Selective attention to auditory and tactile stimulus streams. In PASCAL workshop on methods of data analysis in computational neuroscience and brain computer interfaces. Berlin: Fraunhofer FIRST.Google Scholar
  16. Hill, N.J., Lal, T.N., Bierig, K., Birbaumer, N., Schölkopf, B. (2005). An auditory paradigm for brain-computer interfaces. In L.K. Saul, Y. Weiss, L. Bottou (Eds), Advances in neural information processing systems (Vol. 17, pp. 569–576). Cambridge, MA: MIT Press.Google Scholar
  17. Hoffmann, U., Vesin, J., Ebrahimi, T., Diserens, K. (2008). An efficient p300-based brain-computer interface for disabled subjects. Journal of Neuroscience Methods, 167(1), 115–125. doi:10.1016/j.jneumeth.2007.03.005.PubMedCrossRefGoogle Scholar
  18. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634. doi:10.1109/72.761722.PubMedCrossRefGoogle Scholar
  19. Hyvarinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. Neural Networks, 13(4–5), 411–430. doi:10.1016/S0893-6080(00)00026-5.PubMedCrossRefGoogle Scholar
  20. Krusienski, D., Sellers, E., McFarland, D., Vaughan, T., Wolpaw, J. (2008). Toward enhanced p300 speller performance. Journal of Neuroscience Methods, 167(1), 15–21. doi:10.1016/j.jneumeth.2007.07.017.PubMedCrossRefGoogle Scholar
  21. Krusienski, D.J., Sellers, E.W., Cabestaing, F., Bayoudh, S., McFarland, D.J., Vaughan, T.M., Wolpaw, J.R. (2006). A comparison of classification techniques for the p300 speller. Journal of Neural Engineering, 3, 299–305. doi:10.1088/1741-2560/3/4/007.PubMedCrossRefGoogle Scholar
  22. Krzanowski, W.J., Jonathan, P., McCarthy, W.V., Thomas, M.R. (1995). Discriminant analysis with singular covariance matrices: methods and applications to spectroscopic data. Journal of the Royal Statistical Society Series C (Applied Statistics), 44(1), 101–115. doi:10.2307/2986198.Google Scholar
  23. Ledoit, O., & Wolf, M. (2004). A well-conditioned estimator for large-dimensional covariance matrices. Journal of Multivariate Analysis, 88(2), 365–411. doi:10.1016/S0047-259X(03)00096-4.CrossRefGoogle Scholar
  24. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B. (2007). A review of classification algorithms for EEG-based brain-computer interfaces. Journal of Neural Engineering, 4(2), R1–R13. doi:10.1088/1741-2560/4/2/R01 CrossRefGoogle Scholar
  25. Makeig, S., Bell, A., Jung, T., Sejnowski, T., et al. (1996). Independent component analysis of electroencephalographic data. In D. Touretzky, M. Mozer and M. Hasselmo (Eds.), Advances in Neural Information Processing Systems 8 (pp. 145–151) Cambridge, MA: MIT PressGoogle Scholar
  26. Meier, L., Van De Geer, S., Bühlmann, P. (2008). The group lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1), 53–71. doi:10.1111/j.1467-9868.2007.00627.x.CrossRefGoogle Scholar
  27. Middendorf, M., McMillan, G., Calhoun, G., Jones, K.S. (2000). Brain-computer interfaces based on the steady-state visual-evoked response. IEEE Transactions on Rehabilitation Engineering, 8(2), 211–214. doi:10.1109/86.847819.PubMedCrossRefGoogle Scholar
  28. Muller, K.R., Anderson, C.W., Birch, G.E. (2003). Linear and nonlinear methods for brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(2), 165–169. doi:10.1109/TNSRE.2003.814484.PubMedCrossRefGoogle Scholar
  29. Ng, A.Y., & Jordan, M.I. (2002). On discriminative vs. generative classifiers: A comparison of logistic regression and naive bayes. In Advances in neural information processing systems (pp. 841–848). Vancouver, BC: MIT Press.Google Scholar
  30. Nunez, P.L., & Srinivasan, R. (2005). Electric fields of the brain: The neurophysics of EEG (2nd ed.). USA: Oxford University Press.Google Scholar
  31. Nunez, P.L., Silberstein, R.B., Cadusch, P.J., Wijesinghe, R.S., Westdorp, A.F., Srinivasan, R., (1994). A theoretical and experimental study of high resolution EEG based on surface laplacians and cortical imaging. Electroencephalography and Clinical Neurophysiology, 90(1), 40–57.PubMedCrossRefGoogle Scholar
  32. Perrin, F., Pernier, J., Bertrand, O., Echallier, J.F. (1989). Spherical splines for scalp potential and current density mapping. Electroencephalography and Clinical Neurophysiology, 72(2), 184–187.PubMedCrossRefGoogle Scholar
  33. Pfurtscheller, G., & Neuper, C. (2001). Motor imagery and direct brain-computer communication. Proceedings of the IEEE, 89(7), 1123–1134, doi:10.1109/5.939829.CrossRefGoogle Scholar
  34. Pfurtscheller, G., Brunner, C., Schlogl, A., Lopes da Silva, F. (2006). Mu rhythm (de)synchronization and EEG single-trial classification of different motor imagery tasks. NeuroImage, 31(1), 153–159. doi:10.1016/j.neuroimage.2005.12.003.PubMedCrossRefGoogle Scholar
  35. Ramoser, H., Muller-Gerking, J., Pfurtscheller, G. (2000). Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Transactions on Rehabilitation Engineering, 8(4), 441–446.PubMedCrossRefGoogle Scholar
  36. Schölkopf, B., & Smola, A.J. (2001). Learning with kernels: support vector machines, regularization, optimization, and beyond (1st ed.). The MIT Press.Google Scholar
  37. Selim, A.E., Wahed, M.A., Kadah, Y.M. (2008). Machine learning methodologies in brain-computer interface systems. In IEEE Cairo International Biomedical Engineering Conference (CIBEC) 2008, pp. 1–5. doi:10.1109/CIBEC.2008.4786106.
  38. Tomioka, R., Aihara, K., Muller K. (2007). Logistic regression for single trial EEG classification. Advances in Neural Information Processing Systems, 19, 1377–1384.Google Scholar
  39. Vicente, M.A., Hoyer, P.O., Hyvarinen, A. (2007). Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(5), 896–900. doi:10.1109/TPAMI.2007.1074.CrossRefGoogle Scholar
  40. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 113(6), 767–791.CrossRefGoogle Scholar
  41. Ye, J. (2006). Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 6(1), 483.Google Scholar
  42. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(2), 301–320. doi:10.1111/j.1467-9868.2005.00503.x.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Donders Institute for Brain, Cognition and BehaviourRadboud University NijmegenNijmegenThe Netherlands
  2. 2.Wadsworth CenterNew York State Department of HealthAlbanyUSA

Personalised recommendations