Neuroinformatics

, Volume 10, Issue 4, pp 391–407 | Cite as

Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms

  • Juan Morales
  • Ruth Benavides-Piccione
  • Angel Rodríguez
  • Luis Pastor
  • Rafael Yuste
  • Javier DeFelipe
Original Article

Abstract

Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns.

Keywords

Visual analysis in neuroscience Dendritic spines Irregular and unstructured grids Point-based data 

References

  1. Arellano, J. I., Benavides-Piccione, R., Defelipe, J., & Yuste, R. (2007). Ultrastructure of dendritic spies: Correlation between synaptic and spine morphologies. Frontiers in Neuroscience, 1, 131–143.PubMedCrossRefGoogle Scholar
  2. Ballesteros-Yáñez, I., Benavides-Piccione, R., Bourgeois, J. P., Changeux, J. P., & DeFelipe, J. (2010). Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors. Proceedings of the National Academy of Sciences of the United States of America, 107(25), 11,567–11,572. http://www.biomedsearch.com/nih/Alterations-cortical-pyramidal-neurons-in/20534523.html.CrossRefGoogle Scholar
  3. Bitplane (2011). Imaris. Web. http://www.bitplane.com/go/products/imaris.
  4. Borgefors, G., Nyström, I., & Baja, G. S. D. (1999). Computing skeletons in three dimensions. Pattern Recognition, 32(7), 1225–1236. doi:10.1016/S0031-3203(98)00082-X.CrossRefGoogle Scholar
  5. DeFelipe, J. (2010). From the connectome to the synaptome: An epic love story. Science, 330(6008), 1198–1201. doi:10.1126/science.1193378.PubMedCrossRefGoogle Scholar
  6. Defelipe, J., & Fariñas, I. (1992). The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs. Progress in Neurobiology, 39(6), 563–607. doi:10.1016/0301-0082(92)90015-7.PubMedCrossRefGoogle Scholar
  7. Deutsch, D. (2010). The paradox of pitch circularity. Acoustics Today, 6(3), 8–14. doi:10.1121/1.3488670. http://link.aip.org/link/?ATC/6/8/1 CrossRefGoogle Scholar
  8. Donohue, D. E., & Ascoli, G. A. (2011). Automated reconstruction of neuronal morphology: An overview. Brain Research Reviews, 67(1–2), 94–102.PubMedCrossRefGoogle Scholar
  9. Eick, S. G., & Karr, A. F. (2002). Visual scalability. Journal of Computational and Graphical Statistics, 11(1), 22–43.CrossRefGoogle Scholar
  10. Elston, G. N., & Rosa, M. G. (1997). The occipitoparietal pathway of the macaque monkey: Comparison of pyramidal cell morphology in layer III of functionally related cortical visual areas. Cerebral Cortex, 7(5), 432–452. http://www.biomedsearch.com/nih/occipitoparietal-pathway-macaque-monkey-comparison/9261573.html.PubMedCrossRefGoogle Scholar
  11. Elston, G. N., Benavides-Piccione, R., & DeFelipe, J. (2001). The pyramidal cell in cognition: A comparative study in human and monkey. Journal of Neuroscience, 21(17), RC163(1–5). http://view.ncbi.nlm.nih.gov/pubmed/11511694.
  12. Fiala, J. C., Spacek, J., & Harris, K. M. (2002). Dendritic spine pathology: Cause or consequence of neurological disorders? Brain Research Reviews, 39(1), 29–54. http://view.ncbi.nlm.nih.gov/pubmed/12086707.PubMedCrossRefGoogle Scholar
  13. Fuchs, R., & Hauser, H. (2009). Visualization of multi-variate scientific data. Computer Graphics Forum, 28(6), 1670–1690.CrossRefGoogle Scholar
  14. Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: Elements of reusable object-oriented software. Reading, MA: Addison-Wesley Professional.Google Scholar
  15. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., & Noguchi, J. (2010). Structural dynamics of dendritic spines in memory and cognition. Trends in Neurosciences, 33(3), 121–129. http://www.ncbi.nlm.nih.gov/pubmed/20138375.PubMedCrossRefGoogle Scholar
  16. Lakshmi, J. K., & Punithavalli, M. (2009). A survey on skeletons in digital image processing. In 2009 international conference on digital image processing (pp. 260–269). doi:10.1109/ICDIP.2009.21.
  17. Mansur, D. L., Blattner, M. M., & Joy, K. I. (1985). Sound graphs: A numerical data analysis method for the blind. Journal of Medical Systems, 9(3), 163–174 (1985). doi:10.1007/BF00996201.PubMedCrossRefGoogle Scholar
  18. Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704. doi:10.1002/cyto.a.20895.CrossRefGoogle Scholar
  19. Morales, J., Benavides-Piccione, R., Dar, M., Rodríguez, A., Bielza, C., Fernaud, I., et al. (2012). Dendritic spine organization on the human cerebral cortex (p. 18, under review).Google Scholar
  20. O’Brien, J., & Unwin, N. (2006). Organization of spines on the dendrites of purkinje cells. Proceedings of the National Academy of Sciences of the United States of America, 103(5), 1575–80. http://www.biomedsearch.com/nih/Organization-spines-dendrites-Purkinje-cells/16423897.html.PubMedCrossRefGoogle Scholar
  21. Portera-Cailliau, C., Pan, D. T., & Yuste, R. (2003). Activity-regulated dynamic behavior of early dendritic protrusions: Evidence for different types of dendritic filopodia. Journal of Neuroscience, 23(18), 7129–7142. http://www.jneurosci.org/cgi/content/abstract/23/18/7129.PubMedGoogle Scholar
  22. Rising, L., & Janoff, N. S. (2000). The Scrum software development process for small teams. IEEE Software, 17(4), 26–32 (2000). doi:10.1109/52.854065.CrossRefGoogle Scholar
  23. Semwogerere, D., & Weeks, E. (2005). Confocal microscopy. In G. Wnek, & G. Bowlin (Eds.), Encylopedia of biomaterials and biomedical engineering. New York: Taylor & Francis.Google Scholar
  24. Spruston, N. (2008). Pyramidal neurons: Dendritic structure and synaptic integration. Nature Reviews Neuroscience, 9(3), 206–221. http://www.ncbi.nlm.nih.gov/pubmed/18270515.PubMedCrossRefGoogle Scholar
  25. Yuste, R. (2010). Dendritic spines. Cambridge, MA: MIT Press.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Juan Morales
    • 1
  • Ruth Benavides-Piccione
    • 2
    • 3
  • Angel Rodríguez
    • 4
  • Luis Pastor
    • 5
  • Rafael Yuste
    • 6
  • Javier DeFelipe
    • 2
    • 3
  1. 1.Cajal Blue Brain ProjectUniversidad Politécnica de Madrid (UPM)MadridSpain
  2. 2.Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología BiomédicaUniversidad Politécnica de Madrid (UPM)MadridSpain
  3. 3.Instituto Cajal (CSIC)MadridSpain
  4. 4.Dept. de Arquitectura y Tecnología de Sistemas InformáticosUniversidad Politécnica de Madrid (UPM)MadridSpain
  5. 5.Dept. de Arquitectura y Tecnología de Computadores y Ciencia de la Computación e Inteligencia ArtificialUniversidad Rey Juan Carlos (URJC)MadridSpain
  6. 6.Howard Hughes Medical InstituteColumbia UniversityNew YorkUSA

Personalised recommendations