, Volume 10, Issue 1, pp 81–96 | Cite as

A Library of Cortical Morphology Analysis Tools to Study Development, Aging and Genetics of Cerebral Cortex

  • Peter Kochunov
  • William Rogers
  • Jean-Francois Mangin
  • Jack Lancaster
Original Article


Sharing of analysis techniques and tools is among the main driving forces of modern neuroscience. We describe a library of tools developed to quantify global and regional differences in cortical anatomy in high resolution structural MR images. This library is distributed as a plug-in application for popular structural analysis software, BrainVisa (BV). It contains tools to measure global and regional gyrification, gray matter thickness and sulcal and gyral white matter spans. We provide a description of each tool and examples for several case studies to demonstrate their use. These examples show how the BV library was used to study cortical folding process during antenatal development and recapitulation of this process during cerebral aging. Further, the BV library was used to perform translation research in humans and non-human primates on the genetics of cerebral gyrification. This library, including source code and self-contained binaries for popular computer platforms, is available from the NIH-Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC) resource (


Cortical analysis tools BrainVisa Gray matter thickness Sulcal span Object based morphometry 



This research was supported by the National Institute of Biomedical Imaging and Bioengineering (K01 EB006395) grant to P.K.


  1. Amunts, K., Jancke, L., Mohlberg, H., Steinmetz, H., & Zilles, K. (2000). Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia, 38, 304–312.PubMedCrossRefGoogle Scholar
  2. Ashburner, J., & Friston, K. (2000). Voxel-based morphometry–the methods. NeuroImage, 11, 805–821.PubMedCrossRefGoogle Scholar
  3. Barker, D. J. (2004). The developmental origins of well-being. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 359, 1359–1366.PubMedCrossRefGoogle Scholar
  4. Bonnici, H. M., William, T., Moorhead, J., Stanfield, A. C., Harris, J. M., Owens, D. G., et al. (2007). Pre-frontal lobe gyrification index in schizophrenia, mental retardation and comorbid groups: an automated study. NeuroImage, 35, 648–654.PubMedCrossRefGoogle Scholar
  5. Brown, T. T., Kuperman, J. M., Erhart, M., White, N. S., Roddey, J. C., Shankaranarayanan, A., et al. (2010). Prospective motion correction of high-resolution magnetic resonance imaging data in children. NeuroImage, 53, 139–145.PubMedCrossRefGoogle Scholar
  6. Cachia, A., Mangin, J. F., Riviere, D., Papadopoulos-Orfanos, D., Kherif, F., Bloch, I., et al. (2003). A generic framework for the parcellation of the cortical surface into gyri using geodesic Voronoi diagrams. Medical Image Analysis, 7, 403–416.PubMedCrossRefGoogle Scholar
  7. Cachia, A., Paillere-Martinot, M. L., Galinowski, A., Januel, D., de Beaurepaire, R., Bellivier, F., et al. (2008). Cortical folding abnormalities in schizophrenia patients with resistant auditory hallucinations. NeuroImage, 39, 927–935.PubMedCrossRefGoogle Scholar
  8. Cheverud, J. M., Falk, D., Vannier, M., Konigsberg, L., Helmkamp, R. C., & Hildebolt, C. (1990). Heritability of brain size and surface features in rhesus macaques (Macaca mulatta). Journal of Heredity, 81, 51–57.PubMedGoogle Scholar
  9. Coulon, O., Clouchoux, C., Operto, G., Dauchot, K., Sirigu, A., & Anton, J.-L. (2006). Cortical localization via surface parameterization: a sulcus-based approach. NeuroImage, 31(Suppl. 1), S46.Google Scholar
  10. Coyle, T. R., Kochunov, P., Patel, R. D., Nery, F. G., Lancaster, J. L., Mangin, J. F., et al. (2006). Cortical sulci and bipolar disorder. Neuroreport, 17, 1739–1742.PubMedCrossRefGoogle Scholar
  11. Cruchaga, C., Fernandez-Seara, M. A., Seijo-Martinez, M., Samaranch, L., Lorenzo, E., Hinrichs, A., et al. (2009). Cortical atrophy and language network reorganization associated with a novel progranulin mutation. Cerebral Cortex, 19, 1751–1760.PubMedCrossRefGoogle Scholar
  12. Cykowski, M. D., Coulon, O., Kochunov, P. V., Amunts, K., Lancaster, J. L., Laird, A. R., et al. (2007). The central sulcus: an observer-independent characterization of sulcal landmarks and depth asymmetry. Cerebral Cortex.Google Scholar
  13. Cykowski, M. D., Coulon, O., Kochunov, P. V., Amunts, K., Lancaster, J. L., Laird, A. R., et al. (2008). The central sulcus: an observer-independent characterization of sulcal landmarks and depth asymmetry. Cerebral Cortex, 18, 1999–2009.PubMedCrossRefGoogle Scholar
  14. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97, 11050–11055.PubMedCrossRefGoogle Scholar
  15. Freedman, M., Knoefel, J., Maeser, M., & Levine, H. (1984). Computerized axial tomography in aging. In M. Albert (Ed.), Clinical neurology of aging (pp. 139–148). New York: Oxford University Press.Google Scholar
  16. Gaser, C., Luders, E., Thompson, P. M., Lee, A. D., Dutton, R. A., Geaga, J. A., et al. (2006). Increased local gyrification mapped in Williams syndrome. NeuroImage, 33, 46–54.PubMedCrossRefGoogle Scholar
  17. Glahn, D. C., Thompson, P. M., & Blangero, J. (2007). Neuroimaging endophenotypes: strategies for finding genes influencing brain structure and function. Human Brain Mapping, 28, 488–501.PubMedCrossRefGoogle Scholar
  18. Good, C. D., Scahill, R. I., Fox, N. C., Ashburner, J., Friston, K. J., Chan, D., et al. (2002). Automatic differentiation of anatomical patterns in the human brain: validation with studies of degenerative dementias. NeuroImage, 17, 29–46.PubMedCrossRefGoogle Scholar
  19. Grossman, R., Hoffman, C., Mardor, Y., & Biegon, A. (2006). Quantitative MRI measurements of human fetal brain development in utero. NeuroImage, 33, 463–470.PubMedCrossRefGoogle Scholar
  20. Habas, P. A., Kim, K., Corbett-Detig, J. M., Rousseau, F., Glenn, O. A., Barkovich, A. J., et al. (2010). A spatiotemporal atlas of MR intensity, tissue probability and shape of the fetal brain with application to segmentation. NeuroImage, 53, 460–470.PubMedCrossRefGoogle Scholar
  21. Hu, H. H., Guo, W. Y., Chen, H. Y., Wang, P. S., Hung, C. I., Hsieh, J. C., et al. (2009). Morphological regionalization using fetal magnetic resonance images of normal developing brains. European Journal of Neuroscience, 29, 1560–1567.PubMedCrossRefGoogle Scholar
  22. Hulshoff Pol, H. E., Schnack, H. G., Posthuma, D., Mandl, R. C., Baare, W. F., van Oel, C., et al. (2006). Genetic contributions to human brain morphology and intelligence. Journal of Neuroscience, 26, 10235–10242.PubMedCrossRefGoogle Scholar
  23. Hutsler, J. J., Lee, D. G., & Porter, K. K. (2005). Comparative analysis of cortical layering and supragranular layer enlargement in rodent carnivore and primate species. Brain Research, 1052, 71–81.PubMedCrossRefGoogle Scholar
  24. Huttenlocher, P. R., & Dabholkar, A. S. (1997). Regional differences in synaptogenesis in human cerebral cortex. The Journal of Comparative Neurology, 387, 167–178.PubMedCrossRefGoogle Scholar
  25. Im, K., Lee, J. M., Seo, S. W., Hyung Kim, S., Kim, S. I., & Na, D. L. (2008). Sulcal morphology changes and their relationship with cortical thickness and gyral white matter volume in mild cognitive impairment and Alzheimer’s disease. NeuroImage, 43, 103–113.PubMedCrossRefGoogle Scholar
  26. Janssen, J., Reig, S., Aleman, Y., Schnack, H., Udias, J. M., Parellada, M., et al. (2009). Gyral and sulcal cortical thinning in adolescents with first episode early-onset psychosis. Biological Psychiatry, 66, 1047–1054.PubMedCrossRefGoogle Scholar
  27. Jouvent, E., Mangin, J. F., Porcher, R., Viswanathan, A., O’Sullivan, M., Guichard, J. P., et al. (2008). Cortical changes in cerebral small vessel diseases: a 3D MRI study of cortical morphology in CADASIL. Brain, 131, 2201–2208.PubMedCrossRefGoogle Scholar
  28. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M. C., et al. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46, 786–802.PubMedCrossRefGoogle Scholar
  29. Kochunov, P., & Duff Davis, M. (2009). Development of structural MR brain imaging protocols to study genetics and maturation. Methods, 50, 136–146.PubMedCrossRefGoogle Scholar
  30. Kochunov, P., Lancaster, J., Thompson, P., Boyer, A., Hardies, J., & Fox, P. (2000). Evaluation of octree regional spatial normalization method for regional anatomical matching. Human Brain Mapping, 11, 193–206.PubMedCrossRefGoogle Scholar
  31. Kochunov, P., Mangin, J. F., Coyle, T., Lancaster, J., Thompson, P., Riviere, D., et al. (2005). Age-related morphology trends of cortical sulci. Human Brain Mapping, 26, 210–220.PubMedCrossRefGoogle Scholar
  32. Kochunov, P., Lancaster, J. L., Glahn, D. C., Purdy, D., Laird, A. R., Gao, F., et al. (2006). Retrospective motion correction protocol for high-resolution anatomical MRI. Human Brain Mapping, 27, 957–962.PubMedCrossRefGoogle Scholar
  33. Kochunov, P., Thompson, P. M., Lancaster, J. L., Bartzokis, G., Smith, S., Coyle, T., et al. (2007). Relationship between white matter fractional anisotropy and other indices of cerebral health in normal aging: tract-based spatial statistics study of aging. NeuroImage, 35, 478–487.PubMedCrossRefGoogle Scholar
  34. Kochunov, P., Thompson, P. M., Coyle, T. R., Lancaster, J. L., Kochunov, V., Royall, D., et al. (2008). Relationship among neuroimaging indices of cerebral health during normal aging. Human Brain Mapping, 29, 36–45.PubMedCrossRefGoogle Scholar
  35. Kochunov, P., Coyle, T., Lancaster, J., Robin, D. A., Hardies, J., Kochunov, V., et al. (2009a). Processing speed is correlated with cerebral health markers in the frontal lobes as quantified by neuroimaging. NeuroImage, 49, 1190–1199.PubMedCrossRefGoogle Scholar
  36. Kochunov, P., Glahn, D., Fox, P. T., Lancaster, J., Saleem, K., Shelledy, W., et al. (2009b). Genetics of primary cerebral gyrification: heritability of length, depth and area of primary sulci in an extended pedigree of Papio baboons. NeuroImage, 15, 1126–1132.Google Scholar
  37. Kochunov, P., Glahn, D., Fox, P. T., Lancaster, J., Saleem, K., Shelledy, W., et al. (2009c). Genetics of primary cerebral gyrification: heritability of length, depth and area of primary sulci in an extended pedigree of Papio baboons. Neuroimage. doi: 10.1016/j.neuroimage.2009.12.045.
  38. Kochunov, P., Glahn, D., Winkler, A., Duggirala, R., Olvera, R., Cole, S. A., et al. (2009d). Analysis of genetic variability and whole genome linkage of whole-brain, subcortical and ependymal hyperintense white matter volume. Stroke, 40, 3685–3690.PubMedCrossRefGoogle Scholar
  39. Kochunov, P., Ramage, A. E., Lancaster, J. L., Robin, D. A., Narayana, S., Coyle, T., et al. (2009e). Loss of cerebral white matter structural integrity tracks the gray matter metabolic decline in normal aging. NeuroImage, 45, 17–28.PubMedCrossRefGoogle Scholar
  40. Kochunov, P., Robin, D., Royall, D., Lancaster, J., Kochunov, V., Coyle, T., et al. (2009f). Can structural MRI cerebral health markers track cognitive trends in executive control function during normal maturation and adulthood? Human Brain Mapping, 30, 2581–2594.PubMedCrossRefGoogle Scholar
  41. Kochunov, P., Castro, C., Davis, D., Dudley, D., Brewer, J., Zhang, Y., et al. (2010a). Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI study of fetal brain development in pregnant baboons. Frontiers in Neurogenesis 4.Google Scholar
  42. Kochunov, P., Glahn, D., Lancaster, J., Winkler, A., Kent, J., Olvera, R., et al. (2010b). Whole brain and regional hyperintense white matter volume and blood pressure: overlap of genetic loci produced by bivariate, whole-genome linkage analyses. Stroke, 41, 2137–2142.CrossRefGoogle Scholar
  43. Kochunov, P., Glahn, D. C., Lancaster, J., Winkler, A., Karlsgodt, K., Olvera, R. L., et al. (2010c). Blood pressure and cerebral white matter share common genetic factors in Mexican Americans. Hypertension.Google Scholar
  44. Kochunov, P., Glahn, D., Lancaster, J., Thompson, P., Kochunov, V., Rogers, B., et al. (2011). Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan. Neuroimage doi:10.1016/j.neuroimage.2011.05.050.
  45. Lancaster, J. L., Fox, P. T., Downs, H., Nickerson, D. S., Hander, T. A., El Mallah, M., et al. (1999). Global spatial normalization of human brain using convex hulls. Journal of Nuclear Medicine, 40, 942–955.PubMedGoogle Scholar
  46. Lancaster, J. L., Cykowski, M. D., McKay, D. R., Kochunov, P. V., Fox, P. T., Rogers, W., et al. (2010). Anatomical global spatial normalization. Neuroinformatics, 8, 171–182.PubMedCrossRefGoogle Scholar
  47. Le Goualher, G., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., & Evans, A. C. (1999). Automated extraction and variability analysis of sulcal neuroanatomy. IEEE Transactions on Medical Imaging, 18, 206–217.PubMedCrossRefGoogle Scholar
  48. Le Goualher, G., Argenti, A. M., Duyme, M., Baare, W. F., Hulshoff Pol, H. E., Boomsma, D. I., et al. (2000). Statistical sulcal shape comparisons: application to the detection of genetic encoding of the central sulcus shape. NeuroImage, 11, 564–574.PubMedCrossRefGoogle Scholar
  49. Lerch, J. P., & Evans, A. C. (2005). Cortical thickness analysis examined through power analysis and a population simulation. NeuroImage, 24, 163–173.PubMedCrossRefGoogle Scholar
  50. Liu, T., Wen, W., Zhu, W., Trollor, J., Reppermund, S., Crawford, J., et al. (2010). The effects of age and sex on cortical sulci in the elderly. NeuroImage, 51, 19–27.PubMedCrossRefGoogle Scholar
  51. Liu, T., Wen, W., Zhu, W., Kochan, N. A., Trollor, J. N., Reppermund, S., et al. (2011). The relationship between cortical sulcal variability and cognitive performance in the elderly. NeuroImage, 56, 865–873.PubMedCrossRefGoogle Scholar
  52. Lohmann, G., von Cramon, D. Y., & Steinmetz, H. (1999). Sulcal variability of twins. Cerebral Cortex, 9, 754–763.PubMedCrossRefGoogle Scholar
  53. Lohmann, G., von Cramon, D. Y., Colchester, A. C. (2007). Deep Sulcal Landmarks Provide an Organizing Framework for Human Cortical Folding. Cerebral Cortex.Google Scholar
  54. Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Woods, R. P., Deluca, H., et al. (2006a). Gender effects on cortical thickness and the influence of scaling. Human Brain Mapping, 27, 314–324.CrossRefGoogle Scholar
  55. Luders, E., Thompson, P. M., Narr, K. L., Toga, A. W., Jancke, L., & Gaser, C. (2006b). A curvature-based approach to estimate local gyrification on the cortical surface. NeuroImage, 29, 1224–1230.CrossRefGoogle Scholar
  56. Magnotta, V. A., Andreasen, N. C., Schultz, S. K., Harris, G., Cizadlo, T., Heckel, D., et al. (1999). Quantitative in vivo measurement of gyrification in the human brain: changes associated with aging. Cerebral Cortex, 9, 151–160.PubMedCrossRefGoogle Scholar
  57. Mangin, J. F., Frouin, V., Bloch, I., Régis, J., & López-Krahe, J. (1995). From 3D magnetic resonance images to structural representations of the cortex topography using topology preserving deformations. Journal of Mathematical Imaging and Vision, 5, 297–318.CrossRefGoogle Scholar
  58. Mangin, J. F., Frouin, V., Régis, J., Bloch, I., Belin, P., & Samson, Y. (1996). Towards better management of cortical anatomy in multi-modal multi-individual brain studies. Physica Medica, 12, 103–107.Google Scholar
  59. Mangin, J. F., Riviere, D., Cachia, A., Papadopoulos-Orfanos, D., Collins, D. L., Evans, A. C., et al. (2003). Object-based strategy for morphometry of the cerebral cortex. Information Processing in Medical Imaging, 18, 160–171.PubMedCrossRefGoogle Scholar
  60. Mangin, J. F., Rivière, D., Coulon, O., Poupon, C., Cachia, A., Cointepas, Y., et al. (2004a). Coordinate-based versus structural approaches to brain image analysis. Artificial Intelligence in Medicine, 30, 77–97.CrossRefGoogle Scholar
  61. Mangin, J. F., Riviere, D., Cachia, A., Duchesnay, E., Cointepas, Y., Papadopoulos-Orfanos, D., et al. (2004b). Object-based morphometry of the cerebral cortex. IEEE Transactions on Medical Imaging, 23, 968–982.CrossRefGoogle Scholar
  62. Nopoulos, P., Flaum, M., O’Leary, D., & Andreasen, N. C. (2000). Sexual dimorphism in the human brain: evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research, 98, 1–13.PubMedCrossRefGoogle Scholar
  63. Ono, M., Kubik, S., & Abernathey, C. (1990). Atlas of the Cerebral Sulci. New York: Thieme Medical Publishers.Google Scholar
  64. Pfefferbaum, A., Sullivan, E. V., Jernigan, T. L., Zipursky, R. B., Rosenbloom, M. J., Yesavage, J. A., et al. (1990). A quantitative analysis of CT and cognitive measures in normal aging and Alzheimer’s disease. Psychiatry Research, 35, 115–136.PubMedCrossRefGoogle Scholar
  65. Pillay, P., & Manger, P. R. (2007). Order-specific quantitative patterns of cortical gyrification. European Journal of Neuroscience, 25, 2705–2712.PubMedCrossRefGoogle Scholar
  66. Rajagopalan, V., Scott, J., Habas, P. A., Kim, K., Rousseau, F., Glenn, O. A., et al. (2010). Measures for characterizing directionality specific volume changes in TBM of brain growth. Medical Image Computing and Computer-Assisted Intervention, 13, 339–346.PubMedGoogle Scholar
  67. Raz, N., Gunning, F. M., Head, D., Dupuis, J. H., McQuain, J., Briggs, S. D., et al. (1997). Selective aging of the human cerebral cortex observed in vivo: differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7, 268–282.PubMedCrossRefGoogle Scholar
  68. Raz, N., Gunning-Dixon, F. M., Head, D., Dupuis, J. H., & Acker, J. D. (1998). Neuroanatomical correlates of cognitive aging: evidence from structural magnetic resonance imaging. Neuropsychology, 12, 95–114.PubMedCrossRefGoogle Scholar
  69. Richman, D., Stewart, R., Hutchinson, J., & Caviness, V. S., Jr. (1975). Mechanical model of brain convolutional development. Science, 189, 18–21.CrossRefGoogle Scholar
  70. Rivière, D., Mangin, J. F., Papadopoulos-Orfanos, D., Martinez, J. M., Frouin, V., & Régis, J. (2002). Automatic recognition of cortical sulci of the Human Brain using a congregation of neural networks. Medical Image Analysis, 6, 77–92.PubMedCrossRefGoogle Scholar
  71. Rogers, J., Kochunov, P., Lancaster, J., Shelledy, W., Glahn, D., Blangero, J., et al. (2007). Heritability of brain volume, surface area and shape: an MRI study in an extended pedigree of baboons. Human Brain Mapping, 28, 576–583.PubMedCrossRefGoogle Scholar
  72. Rogers, J., Kochunov, P., Zilles, K., Shelledy, W., Lancaster, J., Thompson, P., et al. (2010). On the genetic architecture of cortical folding and brain volume in primates. NeuroImage, 53, 1103–1108.PubMedCrossRefGoogle Scholar
  73. Smart, I. H., & McSherry, G. M. (1986). Gyrus formation in the cerebral cortex in the ferret. I. Description of the external changes. Journal of Anatomy, 146, 141–152.PubMedGoogle Scholar
  74. Smith, S. M., Zhang, Y., Jenkinson, M., Chen, J., Matthews, P. M., Federico, A., et al. (2002). Accurate, robust, and automated longitudinal and cross-sectional brain change analysis. NeuroImage, 17, 479–489.PubMedCrossRefGoogle Scholar
  75. Smith, S., Jenkinson, M., Woolrich, M., Beckmann, C., Behrens, T., Johansen-Berg, H., et al. (2004a). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23, 208–219.CrossRefGoogle Scholar
  76. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004b). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–219.PubMedCrossRefGoogle Scholar
  77. Sowell, E. R., Peterson, B. S., Kan, E., Woods, R. P., Yoshii, J., Bansal, R., et al. (2007). Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. Cerebral Cortex, 17, 1550–1560.PubMedCrossRefGoogle Scholar
  78. Steiner, I., Gomori, J. M., & Melamed, E. (1985). Progressive brain atrophy during normal aging in man: a quantitative computerized tomography study. Israel Journal of Medical Sciences, 21, 279–282.PubMedGoogle Scholar
  79. Studholme, C., Cardenas, V., Blumenfeld, R., Schuff, N., Rosen, H. J., Miller, B., et al. (2004). Deformation tensor morphometry of semantic dementia with quantitative validation. NeuroImage, 21, 1387–1398.PubMedCrossRefGoogle Scholar
  80. Studholme, C., Drapaca, C., Iordanova, B., & Cardenas, V. (2006). Deformation-based mapping of volume change from serial brain MRI in the presence of local tissue contrast change. IEEE Transactions on Medical Imaging, 25, 626–639.PubMedCrossRefGoogle Scholar
  81. Thompson, P. M., Schwartz, C., Lin, R. T., Khan, A. A., & Toga, A. W. (1996). Three-dimensional statistical analysis of sulcal variability in the human brain. Journal of Neuroscience, 16, 4261–4274.PubMedGoogle Scholar
  82. Thompson, P. M., Mega, M. S., Woods, R. P., Zoumalan, C. I., Lindshield, C. J., Blanton, R. E., et al. (2001). Cortical change in Alzheimer’s disease detected with a disease-specific population-based brain atlas. Cerebral Cortex, 11, 1–16.PubMedCrossRefGoogle Scholar
  83. Thompson, P., Cannon, T. D., & Toga, A. W. (2002). Mapping genetic influences on human brain structure. Annals of Medicine, 34, 523–536.PubMedCrossRefGoogle Scholar
  84. Thompson, P. M., Hayashi, K. M., De Zubicaray, G. I., Janke, A. L., Rose, S. E., Semple, J., et al. (2004). Mapping hippocampal and ventricular change in Alzheimer disease. NeuroImage, 22, 1754–1766.PubMedCrossRefGoogle Scholar
  85. Toro, R., & Burnod, Y. (2005). A morphogenetic model for the development of cortical convolutions. Cerebral Cortex, 15, 1900–1913.PubMedCrossRefGoogle Scholar
  86. Toro, R., Perron, M., Pike, B., Richer, L., Veillette, S., Pausova, Z., et al. (2008). Brain size and folding of the human cerebral cortex. Cerebral Cortex, 18, 2352–2357.PubMedCrossRefGoogle Scholar
  87. Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385, 313–318.PubMedCrossRefGoogle Scholar
  88. Van Essen, D. C., Drury, H. A., Dickson, J., Harwell, J., Hanlon, D., & Anderson, C. H. (2001). An integrated software suite for surface-based analyses of cerebral cortex. Journal of the American Medical Informatics Association, 8, 443–459.PubMedCrossRefGoogle Scholar
  89. Welker W. (1990). Why does cerebral cortex fissure and fold? A review of determinants of gyri and sulci. A review of determinants of gyri and sulci. In: Comparative structure and evolution of cerebral cortex, Part II, vol 8B, New York.Google Scholar
  90. Wey, H. Y., Wang, D. J., & Duong, T. Q. (2010). Baseline CBF, and BOLD, CBF, and CMRO(2) fMRI of visual and vibrotactile stimulations in baboons. Journal of Cerebral Blood Flow and Metabolism, 31, 715–724.PubMedGoogle Scholar
  91. Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., et al. (2009). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 15, 1135–1146.Google Scholar
  92. Zilles, K., Armstrong, E., Schleicher, A., & Kretschmann, H. J. (1988). The human pattern of gyrification in the cerebral cortex. Anatomy and Embryology (Berl), 179, 173–179.CrossRefGoogle Scholar
  93. Zilles, K., Armstrong, E., Moser, K. H., Schleicher, A., & Stephan, H. (1989). Gyrification in the cerebral cortex of primates. Brain, Behavior and Evolution, 34, 143–150.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Peter Kochunov
    • 1
    • 2
  • William Rogers
    • 1
  • Jean-Francois Mangin
    • 3
  • Jack Lancaster
    • 1
  1. 1.Maryland Psychiatric Research Center, Department of PsychiatryUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Southwest Foundation for Biomedical ResearchSan AntonioUSA
  3. 3.NeurospinGif sur YvetteFrance

Personalised recommendations