, Volume 10, Issue 1, pp 67–80 | Cite as

Publication Bias in Neuroimaging Research: Implications for Meta-Analyses

  • Robin G. Jennings
  • John D. Van Horn
Original Article


Neuroimaging and the neurosciences have made notable advances in sharing activation results through detailed databases, making meta-analysis of the published research faster and easier. However, the effect of publication bias in these fields has not been previously addressed or accounted for in the developed meta-analytic methods. In this article, we examine publication bias in functional magnetic resonance imaging (fMRI) for tasks involving working memory in the frontal lobes (Brodmann Areas 4, 6, 8, 9, 10, 37, 45, 46, and 47). Seventy-four studies were selected from the literature and the effect of publication bias was examined using a number of regression-based techniques. Pearson’s r correlation coefficient and Cohen’s d effect size estimates were computed for the activation in each study and compared to the study sample size using Egger’s regression, Macaskill’s regression, and the ‘Trim and Fill’ method. Evidence for publication bias was identified in this body of literature (p < 0.01 for each test), generally, though was neither task- nor sub-region-dependent. While we focused our analysis on this subgroup of brain mapping studies, we believe our findings generalize to the brain imaging literature as a whole and databases seeking to curate their collective results. While neuroimaging databases of summary effects are of enormous value to the community, the potential publication bias should be considered when performing meta-analyses based on database contents.


Brain imaging fMRI Databases Meta-analysis Publication bias 



This work was supported by NIH grant RC1MH088194 to JVH. The authors wish to thank the members of the Laboratory of Neuro Imaging (LONI) in the Department of Neurology at the UCLA David Geffen School of Medicine and three anonymous reviewers of a previous version of this article.


  1. Awad, M. (2010). Publication bias in clinical trials. Journal of the Canadian Dental Association, 76, a175.PubMedGoogle Scholar
  2. Begg, C. B., & Mazumdar, M. (1994). Operating characteristics of a rank correlation test for publication bias. Biometrics, 50(4), 1088–1101.PubMedCrossRefGoogle Scholar
  3. Bracken, M. B. (2005). Genomic epidemiology of complex disease: the need for an electronic evidence-based approach to research synthesis. American Journal of Epidemiology, 162(4), 297–301.PubMedCrossRefGoogle Scholar
  4. Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Hillsdale: Erlbaum Associates.Google Scholar
  5. Deeks, J. J., Macaskill, P., & Irwig, L. (2005). The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. Journal of Clinical Epidemiology, 58(9), 882–893.PubMedCrossRefGoogle Scholar
  6. Derrfuss, J., & Mar, R. A. (2009). Lost in localization: the need for a universal coordinate database. Neuroimage, 48(1), 1–7.PubMedCrossRefGoogle Scholar
  7. Dickersin, K. (1990). The existence of publication bias and risk factors for its occurrence. Jama, 263(10), 1385–1389.PubMedCrossRefGoogle Scholar
  8. Dickersin, K. (1997). How important is publication bias? A synthesis of available data. AIDS Education and Prevention, 9(1 Suppl), 15–21.PubMedGoogle Scholar
  9. Dickersin, K., Min, Y. I., & Meinert, C. L. (1992). Factors influencing publication of research results. Follow-up of applications submitted to two institutional review boards. Jama, 267(3), 374–378.PubMedCrossRefGoogle Scholar
  10. Duval, S., & Tweedie, R. (2000). Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics, 56(2), 455–463.PubMedCrossRefGoogle Scholar
  11. Easterbrook, P. J., Berlin, J. A., Gopalan, R., & Matthews, D. R. (1991). Publication bias in clinical research. Lancet, 337, 86772.CrossRefGoogle Scholar
  12. Egger, M., Davey Smith, G., Schneider, M., & Minder, C. (1997). Bias in meta-analysis detected by a simple, graphical test. BMJ, 315(7109), 629–634. ′2127453:′ 2127453.PubMedCrossRefGoogle Scholar
  13. Fanelli, D. (2010). Do pressures to publish increase scientists’ bias? An empirical support from US States data. PLoS ONE, 5(4), e10271.PubMedCrossRefGoogle Scholar
  14. Fitzgerald, P. B., Srithiran A., et al. (2008). An fMRI study of prefrontal brain activation during multiple tasks in patients with major depressive disorder. Hum Brain Mapp, 29(4), 490–501Google Scholar
  15. Fox, P., & Lancaster, J. (2002). Mapping context and content: the BrainMap model. Nature Reviews Neuroscience, 3(April), 319–321.PubMedCrossRefGoogle Scholar
  16. Fox, P. T., Mikiten, S., Davis, G., & Lancaster, J. (1994). BrainMap: A database of human function brain mapping. In R. W. Thatcher, M. Hallett, T. Zeffiro, E. R. John, & M. Heurta (Eds.), Functional neuroimaging technical foundations (pp. 95–105). San Diego: Academic.Google Scholar
  17. Fox, P. T., Laird, A. R., Fox, S. P., Fox, P. M., Uecker, A. M., Crank, M., et al. (2005). BrainMap taxonomy of experimental design: description and evaluation. Human Brain Mapping, 25(1), 185–198.PubMedCrossRefGoogle Scholar
  18. Friston, K. J., Holmes, A. P., & Worsley, K. J. (1999). How many subjects constitute a study? Neuroimage, 10(1), 1–5.PubMedCrossRefGoogle Scholar
  19. Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., et al. (2009). Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry & Neuroscience, 34(6), 418–432.Google Scholar
  20. Hayashino, Y., Noguchi, Y., & Fukui, T. (2005). Systematic evaluation and comparison of statistical tests for publication bias. Journal of Epidemiology, 15(6), 235–243.PubMedCrossRefGoogle Scholar
  21. Hopewell S, Loudon K, Clarke MJ, Oxman AD, Dickersin K (2009) Publication bias in clinical trials due to statistical significance or direction of trial results. Cochrane Database Syst Rev. (1): MR000006.Google Scholar
  22. Kim, J. J., Kwon, J. S., et al. (2003). Functional disconnection between the prefrontal and parietal cortices during working memory processing in schizophrenia: a[15(O)]H2O PET study. Am J Psychiatry, 160(5), 919–923Google Scholar
  23. Kromrey, J. D., & Redina-Gobioff, G. (2006). On knowing what we do not know: an emperical comparison of methods to detect publication bias in meta-analysis. Educational and Pyschological Measurement, 66, 357–373.CrossRefGoogle Scholar
  24. Laird, A. R., Lancaster, J. L., & Fox, P. T. (2005). BrainMap: the social evolution of a human brain mapping database. Neuroinformatics, 3(1), 65–78.PubMedCrossRefGoogle Scholar
  25. Laird, A. R., Eickhoff, S. B., Li, K., Robin, D. A., Glahn, D. C., & Fox, P. T. (2009). Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. The Journal of Neuroscience, 29(46), 14496–14505.PubMedCrossRefGoogle Scholar
  26. Lieberman, M. D., Berkman, E. T., & Wager, T. D. (2009). Correlations in social neuroscience aren’t voodoo: commentary on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 299–307.CrossRefGoogle Scholar
  27. Light, R. J., & Pillemer, D. B. (1984). Summing up. The science of reviewing research. Cambridge: Harvard University Press.Google Scholar
  28. Lumley T (2009). rmeta: Meta-analysis. R package version 2.16. from
  29. Macaskill, P., Walter, S. D., & Irwig, L. (2001). A comparison of methods to detect publication bias in meta-analysis. Statistics in Medicine, 20(4), 641–654.PubMedCrossRefGoogle Scholar
  30. Malhi, G. S, Lagopoulos, J., et al. (2007). Reduced activation to implicit affect induction in euthymic bipolar patients: an fMRI study. J Affect Disord, 97(1–3), 109–122Google Scholar
  31. Matias-Guiu, J., & Garcia-Ramos, R. (2011). Editorial bias in scientific publications. Neurología, 26(1), 1–5.PubMedCrossRefGoogle Scholar
  32. Murphy, F. C., Nimmo-Smith, I., & Lawrence, A. D. (2003). Functional neuroanatomy of emotions: a meta-analysis. Cognitive, Affective & Behavioral Neuroscience, 3(3), 207–233.CrossRefGoogle Scholar
  33. Neumann, J., von Cramon, D. Y., & Lohmann, G. (2008). Model-based clustering of meta-analytic functional imaging data. Human Brain Mapping, 29(2), 177–192.PubMedCrossRefGoogle Scholar
  34. Nielsen, F. A., & Hansen, L. K. (2002). Modeling of activation data in the BrainMap database: detection of outliers. Human Brain Mapping, 15(3), 146–156.PubMedCrossRefGoogle Scholar
  35. Peters, J. L., Sutton, A. J., Jones, D. R., Abrams, K. R., & Rushton, L. (2006). Comparison of two methods to detect publication bias in meta-analysis. Jama, 295(6), 676–680.PubMedCrossRefGoogle Scholar
  36. Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional imaging of brain responses to pain. A review and meta-analysis (2000). Neurophysiologie Clinique, 30(5), 263–288.PubMedCrossRefGoogle Scholar
  37. Poldrack, R. A., & Mumford, J. A. (2009). Independence in ROI analysis: where is the voodoo? Soc Cogn Affect Neurosci, 4(2), 208–213. ′2686233:′ 2686233.PubMedCrossRefGoogle Scholar
  38. Polyzos NP, Valachis A, Patavoukas E, Papanikolaou EG, Messinis IE, Tarlatzis BC, et al. Publication bias in reproductive medicine: from the European Society of Human Reproduction and Embryology annual meeting to publication. Hum Reprod. 2011.Google Scholar
  39. Rendina-Gobioff G, Kromrey JD (2006) PUB_BIAS: A SAS macro for detecting publication bias in meta-analysis. 14th Annual SouthEast SAS Users Group (SESUG) Conference. Atlanta, GA, SouthEast SAS Users Group (SESUG). PO05.Google Scholar
  40. Rosenthal, R. (1979). The “File Drawer Problem” and tolerance for null results. Psychological Bulletin, 86(3), 638–641.CrossRefGoogle Scholar
  41. Rucker, G., Carpenter, J. R., & Schwarzer, G. (2011). Detecting and adjusting for small-study effects in meta-analysis. Biometrical Journal, 53(2), 351–368.PubMedCrossRefGoogle Scholar
  42. Saeed M, Paulson K, Lambert P, Szwajcer D, Seftel M (2010) Publication bias in blood and marrow transplantation. Biol Blood Marrow Transplant.Google Scholar
  43. Scargle, J. D. (2000). Publication bias: the “File-Drawer” problem in scientific inference. Journal of Scientific Exploration, 14(1), 91–106.Google Scholar
  44. Schooler, J. (2011). Unpublished results hide the decline effect. Nature, 470(7335), 437.PubMedCrossRefGoogle Scholar
  45. Sterne, J. A., Gavaghan, D., & Egger, M. (2000). Publication and related bias in meta-analysis: power of statistical tests and prevalence in the literature. Journal of Clinical Epidemiology, 53(11), 1119–1129.PubMedCrossRefGoogle Scholar
  46. Terrin, N., Schmid, C. H., & Lau, J. (2005). In an empirical evaluation of the funnel plot, researchers could not visually identify publication bias. Journal of Clinical Epidemiology, 58(9), 894–901.PubMedCrossRefGoogle Scholar
  47. Thomason, M. E., Burrows, B. E., Gabrieli, J. D., & Glover, G. H. (2005). Breath holding reveals differences in fMRI BOLD signal in children and adults. Neuroimage, 25(3), 824–837.PubMedCrossRefGoogle Scholar
  48. Thomason, M. E., Chang, C. E., Glover, G. H., Gabrieli, J. D., Greicius, M. D., & Gotlib, I. H. (2008). Default-mode function and task-induced deactivation have overlapping brain substrates in children. Neuroimage, 41(4), 1493–1503.PubMedCrossRefGoogle Scholar
  49. Turkeltaub, P. E., Eden, G. F., Jones, K. M., & Zeffiro, T. A. (2002). Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage, 16(3 Pt 1), 765–780.PubMedCrossRefGoogle Scholar
  50. Van Essen, D. C. (2009). Lost in localization–but found with foci?! Neuroimage, 48(1), 14–17.PubMedCrossRefGoogle Scholar
  51. Van Horn, J. D., & Gazzaniga, M. S. (2002). Databasing fMRI studies—toward a ‘Discovery Science’ of brain function. Nature Reviews. Neuroscience, 3(4), 314–318.PubMedCrossRefGoogle Scholar
  52. Van Horn, J. D., & McManus, I. C. (1992). Ventricular enlargement in schizophrenia. A meta-analysis of studies of the ventricle:brain ratio (VBR). The British Journal of Psychiatry, 160, 687–697.PubMedCrossRefGoogle Scholar
  53. Van Horn, J. D., Grafton, S. T., Rockmore, D., & Gazzaniga, M. S. (2004). Sharing neuroimaging studies of human cognition. Nature Neuroscience, 7(5), 473–481.PubMedCrossRefGoogle Scholar
  54. Vandenbroucke, J. P. (1988). Passive smoking and lung cancer: a publication bias? Br Med J (Clin Res Ed), 296(6619), 391–392. ′2544973:′ 2544973.CrossRefGoogle Scholar
  55. Vul, E., Harris, C., Winkielman, P., & Pashler, H. (2009). Puzzlingly high correlations in fmri studies of emotion, personality, and social cognition. Perspectives on Psychological Science, 4(3), 274–290.CrossRefGoogle Scholar
  56. Yarkoni, T. (2009). Big correlations in little studies: inflated fMRI correlations reflect low statistical power—commentary on Vul et al. (2009). Perspectives on Psychological Science, 4(3), 294–298.CrossRefGoogle Scholar
  57. Zhu, Y., Duijvesz, D., Rovers, M. M., & Lock, T. M. (2011). Evidence-based urology in practice: publication bias. BJU Int, 107(2), 337. author reply 337–338.PubMedCrossRefGoogle Scholar

References to Articles Used in the Analyses of Publication Bias

  1. Altamura, M., Elvevag, B., et al. (2007). Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Research, 154(2), 103–114.PubMedCrossRefGoogle Scholar
  2. Audoin, B., Au Duong, M. V., et al. (2005). Magnetic resonance study of the influence of tissue damage and cortical reorganization on PASAT performance at the earliest stage of multiple sclerosis. Human Brain Mapping, 24(3), 216–228.PubMedCrossRefGoogle Scholar
  3. Baumann, O., Frank, G., et al. (2007). Cortical activation during sequences of memory-guided saccades: a functional MRI study. Neuroreport, 18(5), 451–455.PubMedCrossRefGoogle Scholar
  4. Bedwell, J. S., Horner, M. D., et al. (2005). Functional neuroanatomy of subcomponent cognitive processes involved in verbal working memory. The International Journal of Neuroscience, 115(7), 1017–1032.PubMedCrossRefGoogle Scholar
  5. Beneventi, H., Barndon, R., et al. (2007). An fMRI study of working memory for schematic facial expressions. Scandinavian Journal of Psychology, 48(2), 81–86.PubMedCrossRefGoogle Scholar
  6. Braver, T. S., Cohen, J. D., et al. (1997). A parametric study of prefrontal cortex involvement in human working memory. Neuroimage, 5(1), 49–62.PubMedCrossRefGoogle Scholar
  7. Breitenstein, C., Jansen, A., et al. (2005). Hippocampus activity differentiates good from poor learners of a novel lexicon. Neuroimage, 25(3), 958–968.PubMedCrossRefGoogle Scholar
  8. Bunge, S. A., Ochsner, K. N., et al. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(Pt 10), 2074–2086.PubMedCrossRefGoogle Scholar
  9. Cabeza, R., Dolcos, F., et al. (2002). Similarities and differences in the neural correlates of episodic memory retrieval and working memory. Neuroimage, 16(2), 317–330.PubMedCrossRefGoogle Scholar
  10. Cairo, T. A., Liddle, P. F., et al. (2004). The influence of working memory load on phase specific patterns of cortical activity. Brain Research. Cognitive Brain Research, 21(3), 377–387.PubMedCrossRefGoogle Scholar
  11. Caldwell, J. A., Mu, Q., et al. (2005). Are individual differences in fatigue vulnerability related to baseline differences in cortical activation? Behavioral Neuroscience, 119(3), 694–707.PubMedCrossRefGoogle Scholar
  12. Chang, K., Adleman, N. E., et al. (2004). Anomalous prefrontal-subcortical activation in familial pediatric bipolar disorder: a functional magnetic resonance imaging investigation. Archives of General Psychiatry, 61(8), 781–792.PubMedCrossRefGoogle Scholar
  13. Chen, J. K., Johnston, K. M., et al. (2004). Functional abnormalities in symptomatic concussed athletes: an fMRI study. Neuroimage, 22(1), 68–82.PubMedCrossRefGoogle Scholar
  14. Cohen, J. D., Forman, S. D., et al. (1994). Activation of the prefrontal cortex in a nonspatial working memory task with functional MRI. Human Brain Mapping, 1, 293–304.CrossRefGoogle Scholar
  15. Cohen, J. D., Perlstein, W. M., et al. (1997). Temporal dynamics of brain activation during a working memory task. Nature, 386(6625), 604–608.PubMedCrossRefGoogle Scholar
  16. Cross, E. S., Schmitt, P. J., et al. (2007). Neural substrates of contextual interference during motor learning support a model of active preparation. Journal of Cognitive Neuroscience, 19(11), 1854–1871.PubMedCrossRefGoogle Scholar
  17. Deckersbach, T., Rauch, S. L., et al. (2008). An fMRI investigation of working memory and sadness in females with bipolar disorder: a brief report. Bipolar Disorders, 10(8), 928–942.PubMedCrossRefGoogle Scholar
  18. Desmond, J. E., Chen, S. H., et al. (2003). Increased frontocerebellar activation in alcoholics during verbal working memory: an fMRI study. Neuroimage, 19(4), 1510–1520.PubMedCrossRefGoogle Scholar
  19. Dohnel, K., Sommer, M., et al. (2008). Neural correlates of emotional working memory in patients with mild cognitive impairment. Neuropsychologia, 46(1), 37–48.PubMedCrossRefGoogle Scholar
  20. Dolcos, F., & McCarthy, G. (2006). Brain systems mediating cognitive interference by emotional distraction. The Journal of Neuroscience, 26(7), 2072–2079.PubMedCrossRefGoogle Scholar
  21. Frangou, S., Kington, J., et al. (2008). Examining ventral and dorsal prefrontal function in bipolar disorder: a functional magnetic resonance imaging study. European Psychiatry, 23(4), 300–308.PubMedCrossRefGoogle Scholar
  22. Grosbras, M. H., Leonards, U., et al. (2001). Human cortical networks for new and familiar sequences of saccades. Cerebral Cortex, 11(10), 936–945.PubMedCrossRefGoogle Scholar
  23. Gruber, O., Tost, H., et al. (2010). Pathological amygdala activation during working memory performance: Evidence for a pathophysiological trait marker in bipolar affective disorder. Human Brain Mapping, 31(1), 115–125.PubMedGoogle Scholar
  24. Hamilton, A. F., & Grafton, S. T. (2009). Repetition suppression for performed hand gestures revealed by fMRI. Human Brain Mapping, 30(9), 2898–2906.PubMedCrossRefGoogle Scholar
  25. Harvey, P. O., Fossati, P., et al. (2005). Cognitive control and brain resources in major depression: an fMRI study using the n-back task. Neuroimage, 26(3), 860–869.PubMedCrossRefGoogle Scholar
  26. Hautzel, H., Mottaghy, F. M., et al. (2002). Topographic segregation and convergence of verbal, object, shape and spatial working memory in humans. Neuroscience Letters, 323(2), 156–160.PubMedCrossRefGoogle Scholar
  27. Heide, W., Binkofski, F., et al. (2001). Activation of frontoparietal cortices during memorized triple-step sequences of saccadic eye movements: an fMRI study. The European Journal of Neuroscience, 13(6), 1177–1189.PubMedCrossRefGoogle Scholar
  28. Jeong, B., Kwon, J. S., et al. (2005). Functional imaging evidence of the relationship between recurrent psychotic episodes and neurodegenerative course in schizophrenia. Psychiatry Research, 139(3), 219–228.CrossRefGoogle Scholar
  29. Johnson, M. R., Morris, N. A., et al. (2006). A functional magnetic resonance imaging study of working memory abnormalities in schizophrenia. Biological Psychiatry, 60(1), 11–21.PubMedCrossRefGoogle Scholar
  30. Kanayama, G., Rogowska, J., et al. (2004). Spatial working memory in heavy cannabis users: a functional magnetic resonance imaging study. Psychopharmacology (Berl), 176(3–4), 239–247.CrossRefGoogle Scholar
  31. Kirschen, M. P., Chen, S. H., et al. (2005). Load- and practice-dependent increases in cerebro-cerebellar activation in verbal working memory: an fMRI study. Neuroimage, 24(2), 462–472.PubMedCrossRefGoogle Scholar
  32. Koch, K., Pauly, K., et al. (2007). Gender differences in the cognitive control of emotion: An fMRI study. Neuropsychologia, 45(12), 2744–2754.PubMedCrossRefGoogle Scholar
  33. Koch, K., Wagner, G., et al. (2007). Temporal modeling demonstrates preserved overlearning processes in schizophrenia: an fMRI study. Neuroscience, 146(4), 1474–1483.PubMedCrossRefGoogle Scholar
  34. Koppelstaetter, F., Poeppel, T. D., et al. (2008). Does caffeine modulate verbal working memory processes? An fMRI study. Neuroimage, 39(1), 492–499.PubMedCrossRefGoogle Scholar
  35. Koshino, H., Kana, R. K., et al. (2008). fMRI investigation of working memory for faces in autism: visual coding and underconnectivity with frontal areas. Cerebral Cortex, 18(2), 289–300.PubMedCrossRefGoogle Scholar
  36. Kumari, V., Aasen, I., et al. (2006). Neural dysfunction and violence in schizophrenia: an fMRI investigation. Schizophrenia Research, 84(1), 144–164.PubMedCrossRefGoogle Scholar
  37. Lagopoulos, J., Ivanovski, B., et al. (2007). An event-related functional MRI study of working memory in euthymic bipolar disorder. Journal of Psychiatry & Neuroscience, 32(3), 174–184.Google Scholar
  38. Landau, S. M., Schumacher, E. H., et al. (2004). A functional MRI study of the influence of practice on component processes of working memory. Neuroimage, 22(1), 211–221.PubMedCrossRefGoogle Scholar
  39. LoPresti, M. L., Schon, K., et al. (2008). Working memory for social cues recruits orbitofrontal cortex and amygdala: a functional magnetic resonance imaging study of delayed matching to sample for emotional expressions. The Journal of Neuroscience, 28(14), 3718–3728.PubMedCrossRefGoogle Scholar
  40. Malisza, K. L., Allman, A. A., et al. (2005). Evaluation of spatial working memory function in children and adults with fetal alcohol spectrum disorders: a functional magnetic resonance imaging study. Pediatric Research, 58(6), 1150–1157.PubMedCrossRefGoogle Scholar
  41. Matsuo, K., Glahn, D. C., et al. (2007). Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Molecular Psychiatry, 12(2), 158–166.PubMedCrossRefGoogle Scholar
  42. Meisenzahl, E. M., Scheuerecker, J., et al. (2006). Effects of treatment with the atypical neuroleptic quetiapine on working memory function: a functional MRI follow-up investigation. European Archives of Psychiatry and Clinical Neuroscience, 256(8), 522–531.PubMedCrossRefGoogle Scholar
  43. Mendrek, A., Kiehl, K. A., et al. (2005). Dysfunction of a distributed neural circuitry in schizophrenia patients during a working-memory performance. Psychological Medicine, 35(2), 187–196.PubMedCrossRefGoogle Scholar
  44. Mendrek, A., Laurens, K. R., et al. (2004). Changes in distributed neural circuitry function in patients with first-episode schizophrenia. The British Journal of Psychiatry, 185, 205–214.PubMedCrossRefGoogle Scholar
  45. Mu, Q., Mishory, A., et al. (2005). Decreased brain activation during a working memory task at rested baseline is associated with vulnerability to sleep deprivation. Sleep, 28(4), 433–446.PubMedGoogle Scholar
  46. Mu, Q., Nahas, Z., et al. (2005). Decreased cortical response to verbal working memory following sleep deprivation. Sleep, 28(1), 55–67.PubMedGoogle Scholar
  47. Neuner, I., Stocker, T., et al. (2007). Wechsler memory scale revised edition: neural correlates of the visual paired associates subtest adapted for fMRI. Brain Research, 1177, 66–78.PubMedCrossRefGoogle Scholar
  48. Nystrom, L. E., Braver, T. S., et al. (2000). Working memory for letters, shapes, and locations: fMRI evidence against stimulus-based regional organization in human prefrontal cortex. Neuroimage, 11(5 Pt 1), 424–446.PubMedCrossRefGoogle Scholar
  49. Petit, L., Courtney, S. M., et al. (1998). Sustained activity in the medial wall during working memory delays. The Journal of Neuroscience, 18(22), 9429–9437.PubMedGoogle Scholar
  50. Pochon, J. B., Levy, R., et al. (2002). The neural system that bridges reward and cognition in humans: an fMRI study. Proceedings of the National Academy of Sciences of the United States of America, 99(8), 5669–5674.PubMedCrossRefGoogle Scholar
  51. Pochon, J. B., Levy, R., et al. (2001). The role of dorsolateral prefrontal cortex in the preparation of forthcoming actions: an fMRI study. Cerebral Cortex, 11(3), 260–266.PubMedCrossRefGoogle Scholar
  52. Prado, J., & Noveck, I. A. (2007). Overcoming perceptual features in logical reasoning: a parametric functional magnetic resonance imaging study. Journal of Cognitive Neuroscience, 19(4), 642–657.PubMedCrossRefGoogle Scholar
  53. Quintana, J., Wong, T., et al. (2003). Right lateral fusiform gyrus dysfunction during facial information processing in schizophrenia. Biological Psychiatry, 53(12), 1099–1112.PubMedCrossRefGoogle Scholar
  54. Ragland, J. D., Gur, R. C., et al. (2004). Event-related fMRI of frontotemporal activity during word encoding and recognition in schizophrenia. The American Journal of Psychiatry, 161(6), 1004–1015.PubMedCrossRefGoogle Scholar
  55. Ragland, J. D., Turetsky, B. I., et al. (2002). Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology, 16(3), 370–379.PubMedCrossRefGoogle Scholar
  56. Ricciardi, E., Bonino, D., et al. (2006). Neural correlates of spatial working memory in humans: a functional magnetic resonance imaging study comparing visual and tactile processes. Neuroscience, 139(1), 339–349.PubMedCrossRefGoogle Scholar
  57. Rowe, J. B., Toni, I., et al. (2000). The prefrontal cortex: response selection or maintenance within working memory? Science, 288(5471), 1656–1660.PubMedCrossRefGoogle Scholar
  58. Rypma, B., Prabhakaran, V., et al. (2001). Age differences in prefrontal cortical activity in working memory. Psychology and Aging, 16(3), 371–384.PubMedCrossRefGoogle Scholar
  59. Rypma, B., Prabhakaran, V., et al. (1999). Load-dependent roles of frontal brain regions in the maintenance of working memory. Neuroimage, 9(2), 216–226.PubMedCrossRefGoogle Scholar
  60. Sanchez-Carrion, R., Gomez, P. V., et al. (2008). Frontal hypoactivation on functional magnetic resonance imaging in working memory after severe diffuse traumatic brain injury. Journal of Neurotrauma, 25(5), 479–494.PubMedCrossRefGoogle Scholar
  61. Schmidt, H., Jogia, J., et al. (2009). No gender differences in brain activation during the N-back task: an fMRI study in healthy individuals. Human Brain Mapping, 30(11), 3609–3615.PubMedCrossRefGoogle Scholar
  62. Sevostianov, A., Horwitz, B., et al. (2002). fMRI study comparing names versus pictures of objects. Human Brain Mapping, 16(3), 168–175.PubMedCrossRefGoogle Scholar
  63. Shamosh, N. A., Deyoung, C. G., et al. (2008). Individual differences in delay discounting: relation to intelligence, working memory, and anterior prefrontal cortex. Psychological Science, 19(9), 904–911.PubMedCrossRefGoogle Scholar
  64. Sheridan, M. A., Hinshaw, S., et al. (2007). Efficiency of the prefrontal cortex during working memory in attention-deficit/hyperactivity disorder. Journal of the American Academy of Child and Adolescent Psychiatry, 46(10), 1357–1366.PubMedCrossRefGoogle Scholar
  65. Shikata, E., Hamzei, F., et al. (2003). Functional properties and interaction of the anterior and posterior intraparietal areas in humans. The European Journal of Neuroscience, 17(5), 1105–1110.PubMedCrossRefGoogle Scholar
  66. Simmons, W. K., Martin, A., et al. (2005). Pictures of appetizing foods activate gustatory cortices for taste and reward. Cerebral Cortex, 15(10), 1602–1608.PubMedCrossRefGoogle Scholar
  67. Smith, Y. R., Love, T., et al. (2006). Impact of combined estradiol and norethindrone therapy on visuospatial working memory assessed by functional magnetic resonance imaging. The Journal of Clinical Endocrinology and Metabolism, 91(11), 4476–4481.PubMedCrossRefGoogle Scholar
  68. Sowell, E., Lu, L., et al. (2007). Medial temporal and frontal lobe activation abnormalities during verbal learning in children with fetal alcohol spectrum disorders. Neuroreport, 18, 635–639.PubMedCrossRefGoogle Scholar
  69. Tan, H. Y., Sust, S., et al. (2006). Dysfunctional prefrontal regional specialization and compensation in schizophrenia. The American Journal of Psychiatry, 163(11), 1969–1977.PubMedCrossRefGoogle Scholar
  70. Veltman, D. J., Rombouts, S. A., et al. (2003). Maintenance versus manipulation in verbal working memory revisited: an fMRI study. Neuroimage, 18(2), 247–256.PubMedCrossRefGoogle Scholar
  71. Vinogradov, S., Luks, T. L., et al. (2008). Deficit in a neural correlate of reality monitoring in schizophrenia patients. Cerebral Cortex, 18(11), 2532–2539.PubMedCrossRefGoogle Scholar
  72. Volle, E., Pochon, J. B., et al. (2005). Specific cerebral networks for maintenance and response organization within working memory as evidenced by the ‘double delay/double response’ paradigm. Cerebral Cortex, 15(7), 1064–1074.PubMedCrossRefGoogle Scholar
  73. Walter, H., Wolf, R. C., et al. (2007). Increased left prefrontal activation in patients with unipolar depression: an event-related, parametric, performance-controlled fMRI study. Journal of Affective Disorders, 101(1–3), 175–185.PubMedCrossRefGoogle Scholar
  74. Yoo, S. S., Wei, X., et al. (2005). Long-term reproducibility analysis of fMRI using hand motor task. The International Journal of Neuroscience, 115(1), 55–77.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC (outside the USA) 2011

Authors and Affiliations

  1. 1.Department of BiostatisticsUniversity of California Los AngelesLos AngelesUSA
  2. 2.Laboratory of Neuro Imaging (LONI), Department of Neurology, David Geffen School of MedicineUniversity of California Los AngelesLos AngelesUSA

Personalised recommendations