Neuroinformatics

, Volume 9, Issue 2–3, pp 263–278

Automated Tracing of Neurites from Light Microscopy Stacks of Images

Original Article

Abstract

Automating the process of neural circuit reconstruction on a large-scale is one of the foremost challenges in the field of neuroscience. In this study we examine the methodology for circuit reconstruction from three-dimensional light microscopy (LM) stacks of images. We show how the minimal error-rate of an ideal reconstruction procedure depends on the density of labeled neurites, giving rise to the fundamental limitation of an LM based approach for neural circuit research. Circuit reconstruction procedures typically involve steps related to neuron labeling and imaging, and subsequent image pre-processing and tracing of neurites. In this study, we focus on the last step—detection of traces of neurites from already pre-processed stacks of images. Our automated tracing algorithm, implemented as part of the Neural Circuit Tracer software package, consists of the following main steps. First, image stack is filtered to enhance labeled neurites. Second, centerline of the neurites is detected and optimized. Finally, individual branches of the optimal trace are merged into trees based on a cost minimization approach. The cost function accounts for branch orientations, distances between their end-points, curvature of the merged structure, and its intensity. The algorithm is capable of connecting branches which appear broken due to imperfect labeling and can resolve situations where branches appear to be fused due the limited resolution of light microscopy. The Neural Circuit Tracer software is designed to automatically incorporate ImageJ plug-ins and functions written in MatLab and provides roughly a 10-fold increases in speed in comparison to manual tracing.

Keywords

Tracing Segmentation Axon Dendrite Confocal Stack 

References

  1. Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6, 171–187.PubMedCrossRefGoogle Scholar
  2. Bas E, Erdogmus D. (2010a). Piecewise linear cylinder models for 3-dimensional axon segmentation in Brainbow imagery. Pages 1297–1300. Biomedical Imaging: From Nano to Macro, 2010 IEEE International Symposium on.Google Scholar
  3. Bas, E., & Erdogmus, D. (2010b). Principal curve tracing. Pages 405–410. ESANN 2010 proceedings, European Symposium on Artificial Neural Networks—Computational Intelligence and Machine Learning. Bruges, Belgium.Google Scholar
  4. Bohland, J. W., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Computational Biology, 5, e1000334.PubMedCrossRefGoogle Scholar
  5. Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.Google Scholar
  6. Braitenberg, V., & Schüz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.Google Scholar
  7. Briggman, K. L., & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology, 16, 562–570.PubMedCrossRefGoogle Scholar
  8. Brown, K. M., Barrionuevo, G., Canty, A. J., De Paola, V., Hirsch, J. A., Jefferis, G. S., et al. (2011). The DIADEM Data Sets: Representative Light Microscopy Images of Neuronal Morphology to Advance Automation of Digital Reconstructions. Neuroinformatics.Google Scholar
  9. Can, A., Shen, H., Turner, J. N., Tanenbaum, H. L., & Roysam, B. (1999). Rapid automated tracing and feature extraction from retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 3, 125–138.PubMedCrossRefGoogle Scholar
  10. Cannon, R. C., Turner, D. A., Pyapali, G. K., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.PubMedCrossRefGoogle Scholar
  11. Chen, B. L., Hall, D. H., & Chklovskii, D. B. (2006). Wiring optimization can relate neuronal structure and function. Proceedings of the National Academy of Sciences of the United States of America, 103, 4723–4728.PubMedCrossRefGoogle Scholar
  12. De Paola, V., Holtmaat, A., Knott, G., Song, S., Wilbrecht, L., Caroni, P., et al. (2006). Cell type-specific structural plasticity of axonal branches and boutons in the adult neocortex. Neuron, 49, 861–875.PubMedCrossRefGoogle Scholar
  13. Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2, e329.PubMedCrossRefGoogle Scholar
  14. Deschamps, T., & Cohen, L. D. (2001). Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis, 5, 281–299.PubMedCrossRefGoogle Scholar
  15. Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische Mathematik, 1, 269–271.CrossRefGoogle Scholar
  16. Engel, A., & Broeck, Cvd. (2001). Statistical mechanics of learning. Cambridge: Cambridge University Press.Google Scholar
  17. Escobar, G., Fares, T., & Stepanyants, A. (2008). Structural plasticity of circuits in cortical neuropil. The Journal of Neuroscience, 28, 8477–8488.PubMedCrossRefGoogle Scholar
  18. Frangi, A. F., Niessen, W. J., Vincken, K. L., Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention - Miccai'98 1496: pp. 130–137.Google Scholar
  19. Freeman, W. T., Adelson, E. H., & Massachusetts Institute of Technology. Media Laboratory. Vision and Modeling Group. (1991). The design and use of steerable filters. Cambridge: Vision and Modeling Group, Media Laboratory, Massachusetts Institute of Technology.Google Scholar
  20. Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM metric: comparing multiple reconstructions of the same neuron. Neuroinformatics.Google Scholar
  21. Gonzalez, G., Aguet, F., Fleuret, F., Unser, M., & Fua, P. (2009). Steerable features for statistical 3D dendrite detection. Med Image Comput Comput Assist Interv, 12, 625–632.PubMedGoogle Scholar
  22. González, G., Fleuret, F., & Fua, P. (2008). Automated delineation of dendritic networks in noisy image stacks. In D. Forsyth, P. Torr, & A. Zisserman (Eds.), Computer vision—ECCV 2008 (Vol. 5305, pp. 214–227). Berlin: Springer.CrossRefGoogle Scholar
  23. González G, Turetken E, Fleuret F, Fua P. (2010). Delineating trees in noisy 2D images and 3D image-stacks. Pages 2799–2806. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on.Google Scholar
  24. Grutzendler, J., Kasthuri, N., & Gan, W. B. (2002). Long-term dendritic spine stability in the adult cortex. Nature, 420, 812–816.PubMedCrossRefGoogle Scholar
  25. Hayworth, K. J., Kasthuri, N., Schalek, R., & Lichtman, J. W. (2006). Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microscopy and Microanalysis, 12, 86–87.CrossRefGoogle Scholar
  26. Holtmaat, A. J., Trachtenberg, J. T., Wilbrecht, L., Shepherd, G. M., Zhang, X., Knott, G. W., et al. (2005). Transient and persistent dendritic spines in the neocortex in vivo. Neuron, 45, 279–291.PubMedCrossRefGoogle Scholar
  27. Jacob, M., & Unser, M. (2004). Design of steerable filters for feature detection using canny-like criteria. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26, 1007–1019.PubMedCrossRefGoogle Scholar
  28. Jefferis, G. S., Potter, C. J., Chan, A. M., Marin, E. C., Rohlfing, T., Maurer, C. R., Jr., et al. (2007). Comprehensive maps of Drosophila higher olfactory centers: spatially segregated fruit and pheromone representation. Cell, 128, 1187–1203.PubMedCrossRefGoogle Scholar
  29. Kass, M., Witkin, A., & Terzopoulos, D. (1988). Snakes: active contour models. International Journal of Computer Vision, 1, 321–331.CrossRefGoogle Scholar
  30. Lee, T. C., Kashyap, R. L., & Chu, C. N. (1994). Building skeleton models via (3-D) medial surface/axis thinning algorithms. CVGIP: Graph. Models and Image Processing, 56, 462–478.CrossRefGoogle Scholar
  31. Lichtman, J. W., & Sanes, J. R. (2008). Ome sweet ome: what can the genome tell us about the connectome? Current Opinion in Neurobiology, 18, 346–353.PubMedCrossRefGoogle Scholar
  32. Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour approach to the connectome. Nature Reviews. Neuroscience, 9, 417–422.PubMedCrossRefGoogle Scholar
  33. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450, 56–62.PubMedCrossRefGoogle Scholar
  34. Lorenz, C., Carlsen, I. C., Buzug, T. M., Fassnacht, C., & Weese, J. (1997). Multi-scale line segmentation with automatic estimation of width, contrast and tangential direction in 2D and 3D medical images. Cvrmed-Mrcas’97. 1205: pp. 233–242.Google Scholar
  35. Lu, J., Tapia, J. C., White, O. L., & Lichtman, J. W. (2009). The interscutularis muscle connectome. PLoS Biology, 7, e32.PubMedCrossRefGoogle Scholar
  36. Marr, D., & Hildreth, E. (1980). Theory of edge detection. Proceedings of the Royal Society of London. Series B: Biological Sciences, 207, 187–217.CrossRefGoogle Scholar
  37. Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77, 693–704.CrossRefGoogle Scholar
  38. Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., & Chklovskii, D. B. (2010). Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron, 67, 1009–1020.PubMedCrossRefGoogle Scholar
  39. Palagyi, K., & Kuba, A. (1998). A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognition Letters, 19, 613–627.CrossRefGoogle Scholar
  40. Russ, J. C. (2007). The image processing handbook. Boca Raton: CRC/Taylor and Francis.Google Scholar
  41. Sato, Y., Nakajima, S., Shiraga, N., Atsumi, H., Yoshida, S., Koller, T., et al. (1998). Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Medical Image Analysis, 2, 143–168.PubMedCrossRefGoogle Scholar
  42. Sethian, J. A. (1999). Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science. Cambridge: Cambridge University Press.Google Scholar
  43. Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1, e42.PubMedCrossRefGoogle Scholar
  44. Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. (2007). Automated axon tracking of 3D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinformatics, 5, 189–203.PubMedCrossRefGoogle Scholar
  45. Stepanyants, A., & Chklovskii, D. B. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28, 387–394.PubMedCrossRefGoogle Scholar
  46. Stepanyants, A., Hof, P. R., & Chklovskii, D. B. (2002). Geometry and structural plasticity of synaptic connectivity. Neuron, 34, 275–288.PubMedCrossRefGoogle Scholar
  47. Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRefGoogle Scholar
  48. Stepanyants, A., Martinez, L. M., Ferecsko, A. S., & Kisvarday, Z. F. (2009). The fractions of short- and long-range connections in the visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 3555–3560.PubMedCrossRefGoogle Scholar
  49. Stepanyants, A., Hirsch, J. A., Martinez, L. M., Kisvarday, Z. F., Ferecsko, A. S., & Chklovskii, D. B. (2008). Local potential connectivity in cat primary visual cortex. Cerebral Cortex, 18, 13–28.PubMedCrossRefGoogle Scholar
  50. Streekstra, G. J., & van Pelt, J. (2002). Analysis of tubular structures in three-dimensional confocal images. Network, 13, 381–395.PubMedCrossRefGoogle Scholar
  51. Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., et al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420, 788–794.PubMedCrossRefGoogle Scholar
  52. Vasilkoski, Z., & Stepanyants, A. (2009). Detection of the optimal neuron traces in confocal microscopy images. Journal of Neuroscience Methods, 178, 197–204.PubMedCrossRefGoogle Scholar
  53. Wang, J., Zhou, X., Lu, J., Lichtman, J., Chang, S.-F., Wong, S. T. C. (2007). Dynamic local tracing for 3D axon curvilinear structure detection from microscopic image stack. IEEE, International Symposium of Biomedical Imaging (ISBI). Washington D. C.Google Scholar
  54. Weaver, C. M., Hof, P. R., Wearne, S. L., & Lindquist, W. B. (2004). Automated algorithms for multiscale morphometry of neuronal dendrites. Neural Computation, 16, 1353–1383.PubMedCrossRefGoogle Scholar
  55. White, J., Southgate, E., Thomson, J., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 314, 1–340.CrossRefGoogle Scholar
  56. Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A., & Schnitzer, M. J. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.PubMedCrossRefGoogle Scholar
  57. Wink, O., Frangi, A. F., Verdonck, B., Viergever, M. A., & Niessen, W. J. (2002). 3D MRA coronary axis determination using a minimum cost path approach. Magnetic Resonance in Medicine, 47, 1169–1175.PubMedCrossRefGoogle Scholar
  58. Xie, J., Zhao, T., Lee, T., Myers, E., & Peng, H. (2010). Automatic neuron tracing in volumetric microscopy images with anisotropic path searching. Med Image Comput Comput Assist Interv, 13, 472–479.PubMedGoogle Scholar
  59. Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.PubMedCrossRefGoogle Scholar
  60. Zhou, Y., & Toga, A. W. (1999). Efficient skeletonization of volumetric objects. IEEE Transactions on Visualization and Computer Graphics, 05, 196–209.CrossRefGoogle Scholar
  61. Zhou, Y., Kaufman, A., & Toga, A. W. (1998). Three-dimensional skeleton and centerline generation based on an approximate minimum distance field. Visual Computer, 14, 303–314.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Paarth Chothani
    • 1
  • Vivek Mehta
    • 1
  • Armen Stepanyants
    • 1
  1. 1.Department of Physics and Center for Interdisciplinary Research on Complex SystemsNortheastern UniversityBostonUSA

Personalised recommendations