Neuroinformatics

, Volume 9, Issue 4, pp 381–400 | Cite as

An Open Source Multivariate Framework for n-Tissue Segmentation with Evaluation on Public Data

  • Brian B. Avants
  • Nicholas J. Tustison
  • Jue Wu
  • Philip A. Cook
  • James C. Gee
Original Article

Abstract

We introduce Atropos, an ITK-based multivariate n-class open source segmentation algorithm distributed with ANTs (http://www.picsl.upenn.edu/ANTs). The Bayesian formulation of the segmentation problem is solved using the Expectation Maximization (EM) algorithm with the modeling of the class intensities based on either parametric or non-parametric finite mixtures. Atropos is capable of incorporating spatial prior probability maps (sparse), prior label maps and/or Markov Random Field (MRF) modeling. Atropos has also been efficiently implemented to handle large quantities of possible labelings (in the experimental section, we use up to 69 classes) with a minimal memory footprint. This work describes the technical and implementation aspects of Atropos and evaluates its performance on two different ground-truth datasets. First, we use the BrainWeb dataset from Montreal Neurological Institute to evaluate three-tissue segmentation performance via (1) K-means segmentation without use of template data; (2) MRF segmentation with initialization by prior probability maps derived from a group template; (3) Prior-based segmentation with use of spatial prior probability maps derived from a group template. We also evaluate Atropos performance by using spatial priors to drive a 69-class EM segmentation problem derived from the Hammers atlas from University College London. These evaluation studies, combined with illustrative examples that exercise Atropos options, demonstrate both performance and wide applicability of this new platform-independent open source segmentation tool.

Keywords

Image segmentation Open source Multivariate Cortical parcellation Evaluation BrainWeb ITK 

References

  1. Ashburner, J., & Friston, K. J. (2005). Unified segmentation. Neuroimage, 26, 839–851.PubMedCrossRefGoogle Scholar
  2. Aubert-Broche, B., Griffin, M., Pike, G. B., Evans, A. C., & Collins, D. L. (2006). Twenty new digital brain phantoms for creation of validation image data bases. IEEE Transactions on Medical Imaging, 25, 1410–1416.PubMedCrossRefGoogle Scholar
  3. Avants, B. B., Yushkevich, P., Pluta, J., Minkoff, D., Korczykowski, M., Detre, J., et al. (2010a). The optimal template effect in hippocampus studies of diseased populations. Neuroimage, 49, 2457–2466.PubMedCrossRefGoogle Scholar
  4. Avants, B., Klein, A., Tustison, N., Woo, J., & Gee, J. C. (2010b). Evaluation of open-access, automated brain extraction methods on multi-site multi-disorder data. In 16th annual meeting for the Organization of Human Brain Mapping.Google Scholar
  5. Avants, B., Cook, P. A., McMillan, C., Grossman, M., Tustison, N. J., Zheng, Y., et al. (2010c). Sparse unbiased analysis of anatomical variance in longitudinal imaging. In Proceedings of the 13th international conference on medical image computing and computer-assisted intervention (MICCAI) (Vol. 13, pp. 324–331).Google Scholar
  6. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage, 54, 2033–2044.PubMedCrossRefGoogle Scholar
  7. Awate, S. P., Tasdizen, T., Foster, N., & Whitaker, R. T. (2006). Adaptive Markov modeling for mutual-information-based, unsupervised MRI brain-tissue classification. Medical Image Analysis, 10, 726–739.PubMedCrossRefGoogle Scholar
  8. Balafar, M. A., Ramli, A. R., Saripan, M. I., & Mashohor, S. (2010). Review of brain MRI image segmentation methods. Artificial Intelligence Review, 33, 261–274.CrossRefGoogle Scholar
  9. Ballester, M. A. G., Zisserman, A. P., & Brady, M. (2002). Estimation of the partial volume effect in MRI. Medical Image Analysis, 6, 389–405.CrossRefGoogle Scholar
  10. Battaglini, M., Smith, S. M., Brogi, S., & Stefano, N. D. (2008). Enhanced brain extraction improves the accuracy of brain atrophy estimation. Neuroimage, 40, 583–589.PubMedCrossRefGoogle Scholar
  11. Bazin, P. L., & Pham, D. L. (2007). Topology-preserving tissue classification of magnetic resonance brain images. IEEE Transactions on Medical Imaging, 26, 487–496.PubMedCrossRefGoogle Scholar
  12. Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems. Journal of the Royal Royal Statistical Society B, 36, 192–236.Google Scholar
  13. Besag, J. (1986). On the statistical analysis of dirty pictures. Journal of the Royal Royal Statistical Society, Series B, 48, 259–302.Google Scholar
  14. Bezdek, J. C., Hall, L. O., & Clarke, L. P. (1993). Review of MR image segmentation techniques using pattern recognition. Medical Physics, 20, 1033–1048.PubMedCrossRefGoogle Scholar
  15. Boyes, R. G., Gunter, J. L., Frost, C., Janke, A. L., Yeatman, T., Hill, D. L. G., et al. (2008). Intensity non-uniformity correction using N3 on 3-T scanners with multichannel phased array coils. Neuroimage, 39, 1752–1762.PubMedCrossRefGoogle Scholar
  16. Boykov, Y. Y., & Jolly, M. P. (2001). Interactive graph cuts for optimal boundary & region segmentation of objects in N-D images. In Proc. eighth IEEE int. conf. computer vision ICCV 2001 (Vol. 1, pp. 105–112).Google Scholar
  17. Boykov, Y., & Kolmogorov, V. (2004). An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis amd Machine Intelligence, 26, 1124–1137.CrossRefGoogle Scholar
  18. Chou, Y. Y., Leporã, N., Avedissian, C., Madsen, S. K., Parikshak, N., Hua, X., et al. (2009). Mapping correlations between ventricular expansion and CSF amyloid and tau biomarkers in 240 subjects with Alzheimer’s disease, mild cognitive impairment and elderly controls. Neuroimage, 46, 394–410.PubMedCrossRefGoogle Scholar
  19. Clarke, L. P., Velthuizen, R. P., Camacho, M. A., Heine, J. J., Vaidyanathan, M., Hall, L. O., et al. (1995). MRI segmentation: Methods and applications. Magnetic Resonance Imaging, 13, 343–368.PubMedCrossRefGoogle Scholar
  20. Cline, H. E., Lorensen, W. E., Kikinis, R., & Jolesz, F. (1990). Three-dimensional segmentation of MR images of the head using probability and connectivity. Journal of Computer Assisted Tomography, 14, 1037–1045.PubMedCrossRefGoogle Scholar
  21. Cuadra, M. B., Cammoun, L., Butz, T., Cuisenaire, O., & Thiran, J. P. (2005). Comparison and validation of tissue modelization and statistical classification methods in T1-weighted MR brain images. IEEE Transactions on Medical Imaging, 24, 1548–1565.PubMedCrossRefGoogle Scholar
  22. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9, 179–194.PubMedCrossRefGoogle Scholar
  23. de Boer, R., Vrooman, H. A., Ikram, M. A., Vernooij, M. W., Breteler, M. M. B., van der Lugt, A., et al. (2010). Accuracy and reproducibility study of automatic MRI brain tissue segmentation methods. Neuroimage, 51, 1047–1056.PubMedCrossRefGoogle Scholar
  24. de Bresser, J., Portegies, M. P., Leemans, A., Biessels, G. J., Kappelle, L. J., & Viergever, M. A. (2011). A comparison of MR based segmentation methods for measuring brain atrophy progression. Neuroimage, 54, 760–768.PubMedCrossRefGoogle Scholar
  25. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood estimation from incomplete data using the EM algorithms. Journal of the Royal Statistical Society, 39, 1–38.Google Scholar
  26. Destrieux, C., Fischl, B., Dale, A., & Halgren, E. (2010). Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage, 53, 1–15.PubMedCrossRefGoogle Scholar
  27. Duncan, J. S., Papademetris, X., Yang, J., Jackowski, M., Zeng, X., & Staib, L. H. (2004). Geometric strategies for neuroanatomic analysis from MRI. Neuroimage, 23(Suppl 1), S34–S45.CrossRefGoogle Scholar
  28. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9, 195–207.PubMedCrossRefGoogle Scholar
  29. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Ségonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14, 11–22.PubMedCrossRefGoogle Scholar
  30. Freeborough, P. A., & Fox, N. C. (1997). The boundary shift integral: An accurate and robust measure of cerebral volume changes from registered repeat MRI. IEEE Transactions on Medical Imaging, 16, 623–629.PubMedCrossRefGoogle Scholar
  31. Freeborough, P. A., Fox, N. C., & Kitney, R. I. (1997). Interactive algorithms for the segmentation and quantitation of 3-D MRI brain scans. Computer Methods and Programs in Biomedicine, 53, 15–25.PubMedCrossRefGoogle Scholar
  32. Friston, K. J., Frith, C. D., Liddle, P. F., Dolan, R. J., Lammertsma, A. A., & Frackowiak, R. S. (1990). The relationship between global and local changes in PET scans. Journal of Cerebral Blood Flow and Metabolism, 10, 458–466.PubMedCrossRefGoogle Scholar
  33. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721–741.CrossRefGoogle Scholar
  34. Goualher, G. L., Procyk, E., Collins, D. L., Venugopal, R., Barillot, C., & Evans, A. C. (1999). Automated extraction and variability analysis of sulcal neuroanatomy. IEEE Transactions on Medical Imaging, 18, 206–217.PubMedCrossRefGoogle Scholar
  35. Greenspan, H., Ruf, A., & Goldberger, J. (2006). Constrained Gaussian mixture model framework for automatic segmentation of MR brain images. IEEE Transactions on Medical Imaging, 25, 1233–1245.PubMedCrossRefGoogle Scholar
  36. Hammers, A., Allom, R., Koepp, M. J., Free, S. L., Myers, R., Lemieux, L., et al. (2003). Three-dimensional maximum probability atlas of the human brain, with particular reference to the temporal lobe. Human Brain Mapping, 19, 224–247.PubMedCrossRefGoogle Scholar
  37. Heckemann, R. A., Hajnal, J. V., Aljabar, P., Rueckert, D., & Hammers, A. (2006). Automatic anatomical brain MRI segmentation combining label propagation and decision fusion. Neuroimage, 33, 115–126.PubMedCrossRefGoogle Scholar
  38. Heckemann, R. A., Keihaninejad, S., Aljabar, P., Rueckert, D., Hajnal, J. V., Hammers, A., et al. (2010). Improving intersubject image registration using tissue-class information benefits robustness and accuracy of multi-atlas based anatomical segmentation. Neuroimage, 51, 221–227.PubMedCrossRefGoogle Scholar
  39. Held, K., Kops, E. R., Krause, B. J., Wells, W. M., Kikinis, R., & Müller-Gärtner, H. W. (1997). Markov random field segmentation of brain MR images. IEEE Transactions on Medical Imaging, 16, 878–886.PubMedCrossRefGoogle Scholar
  40. Julin, P., Melin, T., Andersen, C., Isberg, B., Svensson, L., & Wahlund, L. O. (1997). Reliability of interactive three-dimensional brain volumetry using MP-RAGE magnetic resonance imaging. Psychiatry Research, 76, 41–49.PubMedCrossRefGoogle Scholar
  41. Kikinis, R., Shenton, M. E., Gerig, G., Martin, J., Anderson, M., Metcalf, D., et al. (1992). Routine quantitative analysis of brain and cerebrospinal fluid spaces with MR imaging. Journal of Magnetic Resonance Imaging, 2, 619–629.PubMedCrossRefGoogle Scholar
  42. Klauschen, F., Goldman, A., Barra, V., Meyer-Lindenberg, A., & Lundervold, A. (2009). Evaluation of automated brain MR image segmentation and volumetry methods. Human Brain Mapping, 30, 1310–1327.PubMedCrossRefGoogle Scholar
  43. Klein, A., & Hirsch, J. (2005). Mindboggle: A scatterbrained approach to automate brain labeling. Neuroimage, 24, 261–280.PubMedCrossRefGoogle Scholar
  44. Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999a). Automated model-based bias field correction of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 885–896.PubMedCrossRefGoogle Scholar
  45. Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (1999b). Automated model-based tissue classification of MR images of the brain. IEEE Transactions on Medical Imaging, 18, 897–908.PubMedCrossRefGoogle Scholar
  46. Leemput, K. V., Maes, F., Vandermeulen, D., & Suetens, P. (2003). A unifying framework for partial volume segmentation of brain MR images. IEEE Transactions on Medical Imaging, 22, 105–119.PubMedCrossRefGoogle Scholar
  47. Li, S. Z. (2001). Markov random field modeling in computer vision. London: Springer.Google Scholar
  48. Lim, K. O., & Pfefferbaum, A. (1989). Segmentation of MR brain images into cerebrospinal fluid spaces, white and gray matter. Journal of Computer Assisted Tomography, 13, 588–593.PubMedCrossRefGoogle Scholar
  49. Marroquin, J. L., Vemuri, B. C., Botello, S., Calderon, F., & Fernandez-Bouzas, A. (2002). An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Transactions on Medical Imaging, 21, 934–945.PubMedCrossRefGoogle Scholar
  50. Nakamura, K., & Fisher, E. (2009). Segmentation of brain magnetic resonance images for measurement of gray matter atrophy in multiple sclerosis patients. Neuroimage, 44, 769–776.PubMedCrossRefGoogle Scholar
  51. Noe, A., & Gee, J. C. (2001). Partial volume segmentation of cerebral MRI scans with mixture model clustering. In M. Insana, & R. Leahy (Eds.), Information processing in medical imaging. Lecture notes in computer science (Vol. 2082, pp. 423–430). Berlin: Springer.CrossRefGoogle Scholar
  52. Pal, N. R., & Pal, S. K. (1993). A review on image segmentation techniques. Pattern Recognition, 26, 1277–1294.CrossRefGoogle Scholar
  53. Pappas, T. N. (1992). An adaptive clustering algorithm for image segmentation. IEEE Transactions on Signal Processing, 40, 901–914.CrossRefGoogle Scholar
  54. Pham, D. L., Xu, C., & Prince, J. L. (2000). Current methods in medical image segmentation. Annual Review of Biomedical Engineering, 2, 315–337.PubMedCrossRefGoogle Scholar
  55. Pieper, S., Lorensen, B., Schroeder, W., & Kikinis, R. (2006). The NA-MIC kit: ITK, VTK, pipelines, grids and 3D Slicer as an open platform for the medical image computing community. In Proceedings of the 3rd IEEE international symposium on biomedical imaging: From nano to macro (Vol. 1, pp. 698–701).Google Scholar
  56. Pohl, K. M., Bouix, S., Nakamura, M., Rohlfing, T., McCarley, R. W., Kikinis, R., et al. (2007). A hierarchical algorithm for MR brain image parcellation. IEEE Transactions on Medical Imaging, 26, 1201–1212.PubMedCrossRefGoogle Scholar
  57. Pohl, K. M., Fisher, J., Grimson, W. E. L., Kikinis, R., & Wells, W. M. (2006). A Bayesian model for joint segmentation and registration. Neuroimage, 31, 228–239.PubMedCrossRefGoogle Scholar
  58. Prastawa, M., Gilmore, J. H., Lin, W., & Gerig, G. (2005). Automatic segmentation of MR images of the developing newborn brain. Medical Image Analysis, 9, 457–466.PubMedCrossRefGoogle Scholar
  59. Ruan, S., Jaggi, C., Xue, J., Fadili, J., & Bloyet, D. (2000). Brain tissue classification of magnetic resonance images using partial volume modeling. IEEE Transactions on Medical Imaging, 19, 1179–1187.PubMedCrossRefGoogle Scholar
  60. Sanjay-Gopal, S., & Hebert, T. J. (1998). Bayesian pixel classification using spatially variant finite mixtures and the generalized em algorithm. IEEE Transactions on Image Processing, 7, 1014–1028.PubMedCrossRefGoogle Scholar
  61. Sánchez-Benavides, G., Gómez-Ansón, B., Sainz, A., Vives, Y., Delfino, M., & Peña-Casanova, J. (2010). Manual validation of Freesurfer’s automated hippocampal segmentation in normal aging, mild cognitive impairment, and Alzheimer disease subjects. Psychiatry Research, 181, 219–225.PubMedCrossRefGoogle Scholar
  62. Scherrer, B., Forbes, F., Garbay, C., & Dojat, M. (2009). Distributed local MRF models for tissue and structure brain segmentation. IEEE Transactions on Medical Imaging, 28, 1278–1295.PubMedCrossRefGoogle Scholar
  63. Shiee, N., Bazin, P. L., Ozturk, A., Reich, D. S., Calabresi, P. A., & Pham, D. L. (2010). A topology-preserving approach to the segmentation of brain images with multiple sclerosis lesions. Neuroimage, 49, 1524–1535.PubMedCrossRefGoogle Scholar
  64. Sled, J. G., Zijdenbos, A. P., & Evans, A. C. (1998). A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17, 87–97.PubMedCrossRefGoogle Scholar
  65. Smith, S. M., Rao, A., Stefano, N. D., Jenkinson, M., Schott, J. M., Matthews, P. M., et al. (2007). Longitudinal and cross-sectional analysis of atrophy in alzheimer’s disease: Cross-validation of BSI, SIENA and SIENAX. Neuroimage, 36, 1200–1206.PubMedCrossRefGoogle Scholar
  66. Suri, J. S., Singh, S., & Reden, L. (2002). Computer vision and pattern recognition techniques for 2-D and 3-D MR cerebral cortical segmentation (part I): A state-of-the-art review. Pattern Analysis & Applications, 5, 46–76. doi:10.1007/s100440200005.CrossRefGoogle Scholar
  67. Tustison, N. J., Avants, B. B., Cook, P. A., Zheng, Y., Egan, A., Yushkevich, P. A., et al. (2010a). N4ITK: Improved N3 bias correction. IEEE Transactions on Medical Imaging, 29, 1310–1320.PubMedCrossRefGoogle Scholar
  68. Tustison, N., Avants, B., Altes, T., de Lange, E., Mugler, J., & Gee, J. (2010b). Automatic segmentation of ventilation defects in hyperpolarized 3He MRI. In Proceedings of the biomedical engineering society annual meeting.Google Scholar
  69. Tustison, N., Avants, B., Siqueira, M., & Gee, J. (2010c). Topological well-composedness and Glamorous Glue: A digital gluing algorithm for topologically constrained front propagation. IEEE Transactions on Image Processing, accepted.Google Scholar
  70. Vannier, M. W., Butterfield, R. L., Jordan, D., Murphy, W. A., Levitt, R. G., & Gado, M. (1985). Multispectral analysis of magnetic resonance images. Radiology, 154, 221–224.PubMedGoogle Scholar
  71. Viergever, M. A., Maintz, J. B., Niessen, W. J., Noordmans, H. J., Pluim, J. P., Stokking, R., et al. (2001). Registration, segmentation, and visualization of multimodal brain images. Computerized Medical Imaging and Graphics, 25, 147–151.PubMedCrossRefGoogle Scholar
  72. Weisenfeld, N. I., & Warfield, S. K. (2009). Automatic segmentation of newborn brain MRI. Neuroimage, 47, 564–572.PubMedCrossRefGoogle Scholar
  73. Wells, W. M., Grimson, W. L., Kikinis, R., & Jolesz, F. A. (1996). Adaptive segmentation of MRI data. IEEE Transactions on Medical Imaging, 15, 429–442.PubMedCrossRefGoogle Scholar
  74. Westlye, L. T., Walhovd, K. B., Dale, A. M., Espeseth, T., Reinvang, I., Raz, N., et al. (2009). Increased sensitivity to effects of normal aging and Alzheimer’s disease on cortical thickness by adjustment for local variability in gray/white contrast: A multi-sample MRI study. Neuroimage, 47, 1545–1557.PubMedCrossRefGoogle Scholar
  75. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1, 67–82.CrossRefGoogle Scholar
  76. Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31, 1116–1128.PubMedCrossRefGoogle Scholar
  77. Zaidi, H., Ruest, T., Schoenahl, F., & Montandon, M. L. (2006). Comparative assessment of statistical brain MR image segmentation algorithms and their impact on partial volume correction in PET. Neuroimage, 32, 1591–1607.PubMedCrossRefGoogle Scholar
  78. Zhang, Y., Brady, M., & Smith, S. (2001). Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20, 45–57.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Brian B. Avants
    • 1
  • Nicholas J. Tustison
    • 2
  • Jue Wu
    • 1
  • Philip A. Cook
    • 1
  • James C. Gee
    • 1
  1. 1.Penn Image Computing and Science LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Radiology and Medical ImagingUniversity of VirginiaCharlottesvilleUSA

Personalised recommendations