Advertisement

Neuroinformatics

, Volume 9, Issue 2–3, pp 167–179 | Cite as

What’s Black and White About the Grey Matter?

  • Rodney J. Douglas
  • Kevan A. C. Martin
Mini-Review

Abstract

In 1873 Camillo Golgi discovered his eponymous stain, which he called la reazione nera. By adding to it the concepts of the Neuron Doctrine and the Law of Dynamic Polarisation, Santiago Ramon y Cajal was able to link the individual Golgi-stained neurons he saw down his microscope into circuits. This was revolutionary and we have all followed Cajal’s winning strategy for over a century. We are now on the verge of a new revolution, which offers the prize of a far more comprehensive description of neural circuits and their operation. The hope is that we will exploit the power of computer vision algorithms and modern molecular biological techniques to acquire rapidly reconstructions of single neurons and synaptic circuits, and to control the function of selected types of neurons. Only one item is now conspicuous by its absence: the 21st century equivalent of the concepts of the Neuron Doctrine and the Law of Dynamic Polarisation. Without their equivalent we will inevitably struggle to make sense of our 21st century observations within the 19th and 20th century conceptual framework we have inherited.

Keywords

Neuron Doctrine Law of Dynamic Polarisation Golgi stain Canonical cortical circuits High-throughput circuit reconstruction 

Notes

Acknowledgements

We thank our colleagues in the INI for unrelenting discussions and unsparing debates. This review formed the basis of a lecture given by KACM at the Diadem Grand Challenge final at HHMI Janelia Farm. Supported by EU SECO grant 216593 to both authors and Human Frontiers Science Program grant RG 0123/2000-B to KACM.

References

  1. Ananthanarayanan, R., Esser, S. K., Simon, H. D., & Modha, D. S. (2009). The cat is out of the bag: Cortical Simulations with 10^9 neurons and 10^13 synapses. Supercomputing 09: Proceedings of the ACM/IEEE SC2009 Conference on High Performance Networking and Computing, Nov 14–20, 2009, Portland, OR.Google Scholar
  2. Banitt, Y., Martin, K. A., & Segev, I. (2007). A biologically realistic model of contrast invariant orientation tuning by thalamocortical synaptic depression. The Journal of Neuroscience, 27, 10230–10239.PubMedCrossRefGoogle Scholar
  3. Barlow, H. B. (1972). A neuron doctrine for perceptual psychology. Perception, 1, 371–394.PubMedCrossRefGoogle Scholar
  4. Barlow, H. B. (1977). Performance, perception, dark-light, and gain boxes. In E. Pöppel, R. Held, & J. E. Dowling (Eds.), Neuronal mechanisms in visual perception (pp. 394–397). Cambridge: Neurosciences Research Program Bulletin 15, MIT Press.Google Scholar
  5. Barlow, H. B. (1980). Cortical function: A tentative theory and preliminary test. In D. McFadden (Ed.), Neural mechanisms in behaviour (pp. 143–171). New York: Springer.Google Scholar
  6. Barone, P., Batardiere, A., Knoblauch, K., & Kennedy, H. (2000). Laminar distribution of neurons in extrastriate areas projecting to visual areas V1 and V4 correlates with the hierarchical rank and indicates the operation of a distance rule. The Journal of Neuroscience, 20, 3263–3281.PubMedGoogle Scholar
  7. Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects: locally characterizing the structures of axons. Neuroinformatics, THIS ISSUE.Google Scholar
  8. Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2004). A quantitative map of the circuit of cat primary visual cortex. The Journal of Neuroscience, 24, 8441–8453.PubMedCrossRefGoogle Scholar
  9. Binzegger, T., Douglas, R. J., & Martin, K. A. C. (2009). Topology and dynamics of the canonical circuit of cat V1. Neural Networks, 22, 1071–1078.PubMedCrossRefGoogle Scholar
  10. Boyden, E. S., Zhang, F., Bamberg, E., Nagel, G., & Deisseroth, K. (2005). Millisecond-timescale, genetically targeted optical control of neural activity. Nature Neuroscience, 8, 1263–1268.PubMedCrossRefGoogle Scholar
  11. Braitenberg, V., & Lauria, F. (1960). Toward a mathematical description of the grey substance of nervous systems. Nuovo Cimento, 18, 1135–1151.Google Scholar
  12. Braitenberg, V., & Schüz, A. (1991). Peters’ rule and White’s exceptions. In: Anatomy of the cortex (pp. 109–112). Berlin: Springer.Google Scholar
  13. Cajal, S. R. (1913–1914). Estudios Sobre la Degeneración y Regeneración del Sistema Nervioso, Moya. ‘Cajal’s Degeneration and Regeneration of the Nervous System’, OUP New York. Reprinted and edited with additional translations by J DeFelipe, J. and EG Jones, (1991).Google Scholar
  14. Cajal, S. R. (1921). Histology of the visual cortex of the cat. Archivos de Neurobiologia, 2, 338–362. In. J. DeFelipe & E. G. Jones (Eds.), Cajal of the cerebral cortex (pp. 495–523). New York: OUP.Google Scholar
  15. Cajal, S. R. (1937). Recollections of my life. Translated by EH Craigie, J Cano. 1989 Philadephia PA Am Philos. Soc.Google Scholar
  16. Callaway, E. M. (2008). Transneuronal circuit tracing with neurotropic viruses. Current Opinion in Neurobiology, 18, 617–623.PubMedCrossRefGoogle Scholar
  17. Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics, THIS ISSUE.Google Scholar
  18. Cohen, Y. E., & Andersen, R. A. (2002). A common reference frame for movement plans in the posterior parietal cortex. Nature Reviews. Neuroscience, 3, 553–562.PubMedCrossRefGoogle Scholar
  19. Crick, F. H. C. In V. S. Ramachandran (1985). The neurobiology of perception. Perception 14, 97–103.Google Scholar
  20. da Costa, N. M., & Martin, K. A. C. (2009). Selective targeting of the dendrites of corticothalamic cells by thalamic afferents in area 17 of the cat. The Journal of Neuroscience, 29, 13919–13928.PubMedCrossRefGoogle Scholar
  21. da Costa, N. M., & Martin, K. A. C. (2010). Whose cortical column would that be? Frontiers Neuroanat, 4, 16.Google Scholar
  22. Douglas, R. J., & Martin, K. A. C. (1991). Opening the grey box. TINS, 14, 286–293.PubMedGoogle Scholar
  23. Douglas, R. J., & Martin, K. A. C. (2007). Recurrent neuronal circuits in the neocortex. Current Biology, 17, R496–R500.PubMedCrossRefGoogle Scholar
  24. Douglas, R. J., Martin, K. A. C., & Whitteridge, D. (1989). A canonical microcircuit for neocortex. Neural Computation, 1, 480–488.CrossRefGoogle Scholar
  25. Eccles, J. C., Ito, M., & Szentágothai, J. (1967). The Cerebellum as a Neuronal Machine. New York: Springer. 343 pp.Google Scholar
  26. Elston, G. N. (2002). Cortical heterogeneity: implications for visual processing and polysensory integration. Journal of Neurocytology, 31, 317–335.PubMedCrossRefGoogle Scholar
  27. Elston, G. N., Benavides-Piccione, R., & DeFelipe, J. (2001). The pyramidal cell in cognition: a comparative study in human and monkey. Journal of Neuroscience, 21, RC163, 1–5.Google Scholar
  28. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.PubMedCrossRefGoogle Scholar
  29. Ferster, D., & LeVay, S. (1978). The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. The Journal of Comparative Neurology, 182, 923–944.PubMedCrossRefGoogle Scholar
  30. Fulton, J. F. (1949). Physiology of the nervous system (pp. 288–312). New York: OUP.Google Scholar
  31. Gilbert, C.D. (1983). Microcircuitry of the visual cortex. Annu Rev Neurosci. 6, 217–247.Google Scholar
  32. Gilbert, C. D., & Wiesel, T. N. (1979). Morphology and intracortical projections of functionally characterized neurons in the cat visual cortex. Nature, 280, 120–125.PubMedCrossRefGoogle Scholar
  33. Gilbert, C. D., & Wiesel, T. N. (1981). Laminar specialization and intracortical connections in cat primary visual cortex. In F. O. Schmitt, F. G. Worden, G. Adelman, & S. G. Dennis (Eds.), The organization of the cerebral cortex (pp. 163–191). Cambridge: MIT.Google Scholar
  34. Haeusler, S., Schuch, K., & Maass, W. (2009). Motif distribution, dynamical properties, and computational performance of two data-based cortical microcircuit templates. Journal of Physiology - Paris, 103, 73–87.CrossRefGoogle Scholar
  35. Hayworth, K. J., Kasthuri, N., Schalek, R., & Lichtman, J. W. (2006). Automating the collection of ultrathin serial sections for large volume TEM reconstructions. Microscopy and Microanalysis, 12, 86–87. CUP.CrossRefGoogle Scholar
  36. Heeger, D. J., Simoncelli, E. P., & Movshon, J. A. (1996). Computational models of cortical visual processing. Proceedings of the National Academy of Sciences of the United States of America, 93, 623–627.PubMedCrossRefGoogle Scholar
  37. Heinzle, J., Hepp, K., & Martin, K. A. C. (2007). A microcircuit model of the frontal eye fields. The Journal of Neuroscience, 27, 9341–9353.PubMedCrossRefGoogle Scholar
  38. Heinzle, J., Hepp, K., & Martin, K. A. C. (2010). A biologically realistic cortical model of eye movement control in reading. Psychological Review, 117, 808–830.PubMedCrossRefGoogle Scholar
  39. Helmstaedter, M., de Kock, C. P., Feldmeyer, D., Bruno, R. M., & Sakmann, B. (2007). Reconstruction of an average cortical column in silico. Brain Research Reviews, 55, 193–203.PubMedCrossRefGoogle Scholar
  40. Helmstaedter, M., Briggman, K. L., & Denk, W. (2008). 3D structural imaging of the brain with photons and electrons. Current Opinion in Neurobiology, 18, 633–641.PubMedCrossRefGoogle Scholar
  41. Hilgetag, C. C., O’Neill, M. A., & Young, M. P. (1996). Indeterminate organization of the visual system. Science, 271, 776–777.PubMedCrossRefGoogle Scholar
  42. Hines, M. L., Markram, H., & Schürmann, F. (2008). Fully implicit parallel stimulation of single neurons. Journal of Computational Neuroscience, 25, 439–448.PubMedCrossRefGoogle Scholar
  43. Horton, J. C., & Adams, D. L. (2005). The cortical column: a structure without a function. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360, 837–862.PubMedCrossRefGoogle Scholar
  44. Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol, 160, 106–154.Google Scholar
  45. Izhikevich, E. M., & Edelman, G. M. (2008). Large-scale model of mammalian thalamocortical systems. PNAS, 105, 3593–3598.PubMedCrossRefGoogle Scholar
  46. Kalisman, N., Silberberg, G., & Markram, H. (2005). The neocortical microcircuit as a tabula rasa. Proceedings of the National Academy of Sciences of the United States of America, 102, 880–885.PubMedCrossRefGoogle Scholar
  47. Kasthuri, N., & Lichtman, J. W. (2007). The rise of the ‘projectome’. Nature Methods, 4, 307–308.PubMedCrossRefGoogle Scholar
  48. Kasthuri, N., & Lichtman, J. W. (2010). Neurocartography. Neuropsychopharmacology, 35, 342–343.PubMedCrossRefGoogle Scholar
  49. Kouh, M., & Poggio, T. (2008). A canonical neural circuit for cortical nonlinear operations. Neural Computation, 20, 1427–1451.PubMedCrossRefGoogle Scholar
  50. Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour approach to the connectome. Nature Reviews. Neuroscience, 9, 417–422.PubMedCrossRefGoogle Scholar
  51. Lorente de Nó, R. (1949). “Cerebral cortex: architecture, intracortical connections, motor projections,” in Physiology of the Nervous System, ed. J. F. Fulton (New York: Oxford University Press), 288–312.Google Scholar
  52. Lorente de Nó, R. (1992). The cerebral cortex of the mouse, a first contribution—the acoustic cortex. Somatosensory and Motor Research. 9, 3–36, translated by A. Fairen, J. Regidor, L. Kruger, from the original, La corteza cerebral raton, primera contribucion- la corteza acustica, Trabajos del Laboratorio de Investigaciones Biologicas de la Universidad de Madrid, 20 (1922) 41–78.Google Scholar
  53. Markov, N. T., Misery, P., Falchier, A., Lamy, C., Vezoli, J., Quilodran, R., et al. (2010). Weight consistency specifies regularities of Macaque Cortical Networks. Cerebral Cortex, (in press).Google Scholar
  54. Markram, H. (2006). The blue brain project. Nature Reviews. Neuroscience, 7, 153–160.PubMedCrossRefGoogle Scholar
  55. Markram, H. (2008). Fixing the location and dimensions of functional neocortical columns. HFSP Journal, 2, 132–135.PubMedCrossRefGoogle Scholar
  56. Meyer, H. S., Wimmer, V. C., Hemberger, M., Bruno, R. M., de Kock, C. P., Frick, A., et al. (2010). Cell type-specific thalamic innervation in a column of rat vibrissal cortex. Cerebral Cortex, 20, 2287–2303.PubMedCrossRefGoogle Scholar
  57. Meyer, H. S., Wimmer, V. C., Oberlaender, M., de Kock, C. P., Sakmann, B., & Helmstaedter, M. (2010). Number and laminar distribution of neurons in a thalamocortical projection column of rat vibrissal cortex. Cerebral Cortex, 20, 2277–2286.PubMedCrossRefGoogle Scholar
  58. Mormann, F., Kornblith, S., Quiroga, R. Q., Kraskov, A., Cerf, M., Fried, I., et al. (2008). Latency and selectivity of single neurons indicate hierarchical processing in the human medial temporal lobe. The Journal of Neuroscience, 28, 8865–8872.PubMedCrossRefGoogle Scholar
  59. Mountcastle, V. B. (1997). The columnar organization of the neocortex. Brain, 120(Pt 4), 701–722.PubMedCrossRefGoogle Scholar
  60. Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). A preprocessing pipeline to enhance 3-D images of neuronal arbors. Neuroinformatics, THIS ISSUE.Google Scholar
  61. O’Connor, D. H., Huber, D., & Svoboda, K. (2009). Reverse engineering the mouse brain. Nature, 461, 923–929.PubMedCrossRefGoogle Scholar
  62. Peters, A., & Feldman, M. L. (1976). The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. Journal of Neurocytology, 5, 63–84.PubMedCrossRefGoogle Scholar
  63. Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., & Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435, 1102–1107.PubMedCrossRefGoogle Scholar
  64. Quiroga, R. Q., Kreiman, G., Koch, C., & Fried, I. (2008). Sparse but not ‘grandmother-cell’ coding in the medial temporal lobe. Trends in Cognitive Sciences, 12, 87–91.PubMedCrossRefGoogle Scholar
  65. Rockland, K. S. (1997). Elements of cortical architecture. Hierarchy revisited. In K. S. Rockland, J. H. Kaas, & A. Peters (Eds.), Cerebral cortex, vol. 12 (pp. 243–293). New York: Plenum.Google Scholar
  66. Rockland, K. S. (2010). Five points on columns. Frontiers in Neuroanatomy, 4, 1–10.Google Scholar
  67. Rockland, K. S., & Pandya, D. N. (1979). Laminar origins and terminations of cortical connections to the occipital lobe in the rhesus monkey. Brain Research, 179, 3–20.PubMedCrossRefGoogle Scholar
  68. Rushton, W. A. H. (1977). Some memories of visual research in the past 50 years. In The pursuit of nature (pp. 85–104.). Cambridge: CUP.Google Scholar
  69. Rutishauser, U., & Douglas, R. J. (2009). State dependent computation using coupled recurrent networks. Neural Computation, 21, 478–509.PubMedCrossRefGoogle Scholar
  70. Seung, H. S. (2009). Reading the book of memory: sparse sampling versus dense mapping of connectomes. Neuron, 62, 17–29.PubMedCrossRefGoogle Scholar
  71. Shepherd, G. M. (1991). Foundations of the neuron doctrine. New York: Oxford University Press.Google Scholar
  72. Sherrington, C. (1940). Man on his Nature. Cambridge. CUP. p. 277.Google Scholar
  73. Sholl, D. (1956). The organisation of the cerebral cortex. London: Methuen.Google Scholar
  74. Sullivan, L. (1896). The tall office building artistically considered. Lippincotts Magazine (March). In I. Athey (Ed.), Kindergarten chats and other writings. New York: Dover Publications. 1979.Google Scholar
  75. Tao-Cheng, J. H., Gallant, P. E., Brightman, M. W., Dosemeci, A., & Reese, T. S. (2007). Structural changes at synapses after delayed perfusion fixation in different regions of the mouse brain. The Journal of Comparative Neurology, 501, 731–740.PubMedCrossRefGoogle Scholar
  76. Thompson, D. W. (1971). On growth and form. Abridged Edition. Cambridge: CUP.Google Scholar
  77. Tsodyks, M., Kenet, T., Grinvald, A., & Arieli, A. (1999). Linking spontaneous activity of single cortical neurons and the underlying functional architecture. Science, 286, 1943–1946.PubMedCrossRefGoogle Scholar
  78. Turetken, E., Gonzalez, G., Blum, C., Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, THIS ISSUE.Google Scholar
  79. Wang, Y., Narayanaswamy, A., Tsai, C., Roysam, B. (2011). Generally Applicable 3D >Neuron Tracing Approach and System based on Open-Curve Snake. Neuroinformatics, THIS ISSUE.Google Scholar
  80. Wiesel, T. N., & Gilbert, C. D. (1983). The Sharpey-Schafer lecture. Morphological basis of visual cortical function. Quarterly Journal of Experimental Physiology, 68, 525–543.PubMedGoogle Scholar
  81. Wimmer, V. C., Bruno, R. M., de Kock, C. P., Kuner, T., & Sakmann, B. (2010). Dimensions of a projection column and architecture of VPM and POm axons in rat vibrissal cortex. Cerebral Cortex, 20, 2265–2276.PubMedCrossRefGoogle Scholar
  82. Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., Long, F., Myers, E. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics, THIS ISSUE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Institute of NeuroinformaticsUZH/ETHZürichSwitzerland

Personalised recommendations