Advertisement

Neuroinformatics

, Volume 9, Issue 2–3, pp 159–166 | Cite as

Neuronal Tracing for Connectomic Studies

Mini-Review

Abstract

Reconstruction of the complete wiring diagram, or connectome, of a neural circuit provides an alternative approach to conventional circuit analysis. One major obstacle of connectomics lies in segmenting and tracing neuronal processes from the vast number of images obtained with optical or electron microscopy. Here I review recent progress in automated tracing algorithms for connectomic reconstruction with fluorescence and electron microscopy, and discuss the challenges to image analysis posed by novel optical imaging techniques.

Keywords

Connectomics Image segmentation Neuron tracing Fluorescence microscopy Electron microscopy 

Notes

Acknowledgement

The author thanks Prof. Mark Schnitzer for support of this work; Prof. Giorgio Ascoli, Prof. Jeff W. Lichtman, Prof. Yi Zuo, and the two anonymous reviewers for discussions and comments on this manuscript.

References

  1. Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.PubMedCrossRefGoogle Scholar
  2. Andres, B., Kothe, U., Helmstaedter, M., Denk, W., & Hamprecht, F. A. (2008). Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In G. Rigoll (Ed.), Pattern Recognition, 30th DAGM Symposium, Munich, Germany, June 10–13, 2008, Proceedings. Lecture Notes in Computer Science 5096 (pp. 142–152). Springer.Google Scholar
  3. Anderson, J. R., Mohammed, S., Grimm, B., Jones, B. W., Koshevoy, P., Tasdizen, T., et al. (2011). The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets. Journal of Microscopy, 241(1), 13–28.PubMedCrossRefGoogle Scholar
  4. Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho. Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRefGoogle Scholar
  5. Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects: locally characterizing the structures of axons. Neuroinformatics. doi: 10.1007/s12021-011-9105-2.
  6. Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642–1645.PubMedCrossRefGoogle Scholar
  7. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739.PubMedCrossRefGoogle Scholar
  8. Briggman, K. L., & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology, 16(5), 562–570.PubMedCrossRefGoogle Scholar
  9. Briggman, K. L., Helmstaedter, M., & Denk, W. (2011) Wiring specificity in the direction-selectivity circuit of the mammalian retina. Nature, in press.Google Scholar
  10. Broser, P. J., Schulte, R., Lang, S., Roth, A., Helmchen, F., Waters, J., et al. (2004). Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy. Journal of Biomedical Optics, 9(6), 1253–1264.PubMedCrossRefGoogle Scholar
  11. Cai, H. M., Xu, X. Y., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. C. (2006). Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks. Neuroimage, 32(4), 1608–1620.PubMedCrossRefGoogle Scholar
  12. Cai, H. M., Xu, X. Y., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. C. (2008). Using nonlinear diffusion and mean shift to detect and connect cross-sections of axons in 3D optical microscopy images. Medical Image Analysis, 12(6), 666–675.PubMedCrossRefGoogle Scholar
  13. Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., et al. (2010). An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biology, 8(10).Google Scholar
  14. Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics. doi: 10.1007/s12021-011-9121-2.
  15. Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. Journal of Microscopy, 173, 103–114.PubMedGoogle Scholar
  16. Conchello, J. A., & Lichtman, J. W. (2005). Optical sectioning microscopy. Nature Methods, 2(12), 920–931.PubMedCrossRefGoogle Scholar
  17. Cuntz, H., Forstner, F., Haag, J., & Borst, A. (2008). The morphological identity of insect dendrites. PLoS Computational Biology, 4(12), e1000251.PubMedCrossRefGoogle Scholar
  18. Cuntz, H., Forstner, F., Borst, A., & Hausser, M. (2010). One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8).Google Scholar
  19. Dani, A., Huang, B., Bergan, J., Dulac, C., & Zhuang, X. (2010). Superresolution imaging of chemical synapses in the brain. Neuron, 68(5), 843–856.PubMedCrossRefGoogle Scholar
  20. DeFelipe, J. (2010). From the connectome to the synaptome: an epic love story. Science, 330(6008), 1198–1201.PubMedCrossRefGoogle Scholar
  21. Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), 1900–1909.CrossRefGoogle Scholar
  22. Dima, A., Scholz, M., & Obermayer, K. (2002). Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform. IEEE Transactions on Image Processing, 11(7), 790–801.PubMedCrossRefGoogle Scholar
  23. Dima, A., Scholz, M., & Obermayer, K. (2003). Automatic three-dimensional graph construction of nerve cells from confocal microscopy. Journal of Electronic Imaging, 12(1), 134–150.CrossRefGoogle Scholar
  24. Feng, G., Mellor, R. H., Bernstein, M., Keller-Peck, C., Nguyen, Q. T., Wallace, M., et al. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28(1), 41–51.PubMedCrossRefGoogle Scholar
  25. Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218(Pt 1), 52–61.PubMedCrossRefGoogle Scholar
  26. Frohn, J. T., Knapp, H. F., & Stemmer, A. (2000). True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7232–7236.PubMedCrossRefGoogle Scholar
  27. Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., & Lichtman, J. W. (2000). Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron, 27(2), 219–225.PubMedCrossRefGoogle Scholar
  28. Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87.PubMedCrossRefGoogle Scholar
  29. Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13081–13086.PubMedCrossRefGoogle Scholar
  30. He, X., Kischell, E., Rioult, M., & Holmes, T. J. (1998). Three-dimensional thinning algorithm that peels the outmost layer with application to neuron tracing. Journal of Computer-Assisted Microscopy, 10(3), 123–135.CrossRefGoogle Scholar
  31. He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., et al. (2003). Automated three-dimensional tracing of neurons in confocal and brightfield images. Microscopy and Microanalysis, 9(4), 296–310.PubMedCrossRefGoogle Scholar
  32. Heintzmann, R., & Gustafsson, M. G. L. (2009). Subdiffraction resolution in continuous samples. Nature Photonics, 3(7), 362–364.CrossRefGoogle Scholar
  33. Heintzmann, R., Jovin, T. M., & Cremer, C. (2002). Saturated patterned excitation microscopy - a concept for optical resolution improvement. Journal of the Optical Society of America A, 19(8), 1599–1609.CrossRefGoogle Scholar
  34. Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316(5828), 1153–1158.PubMedCrossRefGoogle Scholar
  35. Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940.PubMedCrossRefGoogle Scholar
  36. Helmstaedter, M., Briggman, K. L., & Denk, W. (2008). 3D structural imaging of the brain with photons and electrons. Current Opinion in Neurobiology, 18(6), 633–641.PubMedCrossRefGoogle Scholar
  37. Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91(11), 4258–4272.PubMedCrossRefGoogle Scholar
  38. Jain, V., Seung, H. S., & Turaga, S. C. (2010). Machines that learn to segment images: a crucial technology for connectomics. Current Opinion in Neurobiology, 20, 1–14.CrossRefGoogle Scholar
  39. Jeong, W. K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A., et al. (2010). Ssecrett and NeuroTrace: interactive visualization and analysis tools for large-scale neuroscience data sets. IEEE Computer Graphics and Applications, 30(3), 58–70.PubMedCrossRefGoogle Scholar
  40. Jurrus, E., Hardy, M., Tasdizen, T., Fletcher, P. T., Koshevoy, P., Chien, C. B., et al. (2009). Axon tracking in serial block-face scanning electron microscopy. Medical Image Analysis, 13(1), 180–188.PubMedCrossRefGoogle Scholar
  41. Jurrus, E., Paiva, A. R., Watanabe, S., Anderson, J. R., Jones, B. W., Whitaker, R. T., et al. (2010). Detection of neuron membranes in electron microscopy images using a serial neural network architecture. Medical Image Analysis, 14(6), 770–783.PubMedCrossRefGoogle Scholar
  42. Kasthuri, N., & Lichtman, J. W. (2007). The rise of the 'projectome'. Nature Methods, 4(4), 307–308.PubMedCrossRefGoogle Scholar
  43. Kasthuri, N., Hayworth, K., Lichtman, J., Erdman, N., & Ackerley, C. A. (2007). New technique for ultra-thin serial brain section imaging using scanning electron microscopy. Microscopy and Microanalysis, 13, 26–27.CrossRefGoogle Scholar
  44. Knott, G., Marchman, H., Wall, D., & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. The Journal of Neuroscience, 28(12), 2959–2964.PubMedCrossRefGoogle Scholar
  45. Lee, P. C., Ching, Y. T., Chang, H. M., & Chiang, A. S. (2008). A semi-automatic method for neuron centerline extraction in confocal microscopic image stack. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2008) (pp. 959–962). Paris, France.Google Scholar
  46. Lee, P. C., Chang, H. M., Lin, C. Y., Chiang, A. S., & Ching, Y. T. (2009). Constructing neuronal structure from 3D confocal microscopic images. Journal of Medical and Biological Engineering, 29(1), 1–6.CrossRefGoogle Scholar
  47. Lichtman, J. W., & Sanes, J. R. (2008). Ome sweet ome: what can the genome tell us about the connectome? Current Opinion in Neurobiology, 18(3), 346–353.PubMedCrossRefGoogle Scholar
  48. Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour approach to the connectome. Nature Reviews Neuroscience, 9(6), 417–422.PubMedCrossRefGoogle Scholar
  49. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62.PubMedCrossRefGoogle Scholar
  50. Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.PubMedCrossRefGoogle Scholar
  51. Lu, J., Tapia, J. C., White, O. L., & Lichtman, J. W. (2009). The interscutularis muscle connectome. PLoS Biology, 7(2), e32.PubMedCrossRefGoogle Scholar
  52. Luisi, J., Narayanaswamy, A., Galbreath, Z., & Roysam, B. (2011). The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics. doi: 10.1007/s12021-011-9115-0.
  53. Macagno, E. R., Lopresti, V., & Levintha, C. (1973). Structure and development of neuronal connections in isogenic organisms - variations and similarities in optic system of Daphnia magna. Proceedings of the National Academy of Sciences of the United States of America, 70(1), 57–61.PubMedCrossRefGoogle Scholar
  54. Macke, J. H., Maack, N., Gupta, R., Denk, W., Scholkopf, B., & Borst, A. (2008). Contour-propagation algorithms for semi-automated reconstruction of neural processes. Journal of Neuroscience Methods, 167(2), 349–357.PubMedCrossRefGoogle Scholar
  55. Mayerich, D., & Keyser, J. (2009). Hardware accelerated segmentation of complex volumetric filament networks. IEEE Transactions on Visualization and Computer Graphics, 15(4), 670–681.PubMedCrossRefGoogle Scholar
  56. Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704.CrossRefGoogle Scholar
  57. Mishchenko, Y. (2009). Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs. Journal of Neuroscience Methods, 176(2), 276–289.PubMedCrossRefGoogle Scholar
  58. Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., & Chklovskii, D. B. (2010). Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron, 67(6), 1009–1020.PubMedCrossRefGoogle Scholar
  59. Myatt, D. R., & Nasuto, S. J. (2008). Improved automatic midline tracing of neurites with Neuromantic. BMC Neuroscience, 9(Suppl 1), 81.CrossRefGoogle Scholar
  60. Nagerl, U. V., Willig, K. I., Hein, B., Hell, S. W., & Bonhoeffer, T. (2008). Live-cell imaging of dendritic spines by STED microscopy. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18982–18987.PubMedCrossRefGoogle Scholar
  61. Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors. Neuroinformatics. doi: 10.1007/s12021-011-9116-z.
  62. Peng, H. (2008). Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), 1827–1836.PubMedCrossRefGoogle Scholar
  63. Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26(12), i38–46.PubMedCrossRefGoogle Scholar
  64. Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.PubMedCrossRefGoogle Scholar
  65. Ramon y Cajal, S. (1995). Histology of the Nervous System of Man and Vertebrates. (trans.) Swanson N. and Swanson L., Oxford University Press.Google Scholar
  66. Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., et al. (2003). Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods, 30(1), 94–105.PubMedCrossRefGoogle Scholar
  67. Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.PubMedCrossRefGoogle Scholar
  68. Rust, M. J., Bates, M., & Zhuang, X. W. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–795.PubMedCrossRefGoogle Scholar
  69. Saetzler, K., McCanny, P., Rodriguez, E. P., Horstmann, H., Bruno, R. M., & Denk, W. (2009). A fuzzy algorithm to trace stained neurons in serial block-face scanning electron microscopy image series. 13th International Machine Vision and Image Processing Conference (IMVIP 2009) (pp. 162–167). Dublin, Ireland.Google Scholar
  70. Schmitt, S., Evers, J. F., Duch, C., Scholz, M., & Obermayer, K. (2004). New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage, 23(4), 1283–1298.PubMedCrossRefGoogle Scholar
  71. Sharonov, A., & Hochstrasser, R. M. (2006). Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 18911–18916.PubMedCrossRefGoogle Scholar
  72. Sjöstrand, F. S. (1958). Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by 3-dimensional reconstructions from serial sections. Journal of Ultrastructure Research, 2(1), 122–170.PubMedCrossRefGoogle Scholar
  73. Smith, S. J. (2007). Circuit reconstruction tools today. Current Opinion in Neurobiology, 17(5), 601–608.PubMedCrossRefGoogle Scholar
  74. Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42.PubMedCrossRefGoogle Scholar
  75. Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2007). Automated axon tracking of 3D Confocal laser scanning microscopy images using guided Probabilistic region merging. Neuroinformatics, 5(3), 189–203.PubMedCrossRefGoogle Scholar
  76. Swedlow, J. R., Goldberg, I. G., & Eliceiri, K. W. (2009). Bioimage informatics for experimental biology. Annual Review of Biophysics, 38, 327–346.PubMedCrossRefGoogle Scholar
  77. Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., et al. (2010). Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22(2), 511–538.PubMedCrossRefGoogle Scholar
  78. Türetken, E., González, G., Blum, C., & Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics. doi: 10.1007/s12021-011-9122-1.
  79. Vasilkoski, Z., & Stepanyants, A. (2009). Detection of the optimal neuron traces in confocal microscopy images. Journal of Neuroscience Methods, 178(1), 197–204.PubMedCrossRefGoogle Scholar
  80. Vazquez, L., Sapiro, G., & Randall, G. (1998). Segmenting neurons in electronic microscopy via geometric tracing. 1998 International Conference on Image Processing (ICIP’98) (vol. 3, pp. 814–818). Chicago, IL.Google Scholar
  81. Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics. doi: 10.1007/s12021-011-9110-5.
  82. Ward, S., Thomson, N., White, J. G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. The Journal of Comparative Neurology, 160(3), 313–337.PubMedCrossRefGoogle Scholar
  83. Ware, R. W., & Lopresti, V. (1975). 3-dimensional reconstruction from serial sections. International Review of Cytology, 40, 325–440.PubMedCrossRefGoogle Scholar
  84. Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., & Hof, P. R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.PubMedCrossRefGoogle Scholar
  85. Weaver, C. M., Hof, P. R., Wearne, S. L., & Lindquist, W. B. (2004). Automated algorithms for multiscale morphometry of neuronal dendrites. Neural Computation, 16(7), 1353–1383.PubMedCrossRefGoogle Scholar
  86. White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 314, 1–340.CrossRefGoogle Scholar
  87. Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., & Hell, S. W. (2006). Nanoscale resolution in GFP-based microscopy. Nature Methods, 3(9), 721–723.PubMedCrossRefGoogle Scholar
  88. Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A., & Schnitzer, M. J. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.PubMedCrossRefGoogle Scholar
  89. Xu, C. Y., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.PubMedCrossRefGoogle Scholar
  90. Yuan, X. S., Trachtenberg, J. T., Potter, S. M., & Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7(4), 213–232.PubMedCrossRefGoogle Scholar
  91. Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31(3), 1116–1128.PubMedCrossRefGoogle Scholar
  92. Zhang, Y., Zhou, X., Lu, J., Lichtman, J., Adjeroh, D., & Wong, S. T. (2008). 3D axon structure extraction and analysis in confocal fluorescence microscopy images. Neural Computation, 20(8), 1899–1927.PubMedCrossRefGoogle Scholar
  93. Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics. doi: 10.1007/s12021-011-9120-3.
  94. Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D., & Luo, L. (2005). Mosaic analysis with double markers in mice. Cell, 121(3), 479–492.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.James H. Clark Center for Biomedical Engineering and Sciences, Department of Biological SciencesStanford UniversityStanfordUSA

Personalised recommendations