Neuronal Tracing for Connectomic Studies
- 1.4k Downloads
- 19 Citations
Abstract
Reconstruction of the complete wiring diagram, or connectome, of a neural circuit provides an alternative approach to conventional circuit analysis. One major obstacle of connectomics lies in segmenting and tracing neuronal processes from the vast number of images obtained with optical or electron microscopy. Here I review recent progress in automated tracing algorithms for connectomic reconstruction with fluorescence and electron microscopy, and discuss the challenges to image analysis posed by novel optical imaging techniques.
Keywords
Connectomics Image segmentation Neuron tracing Fluorescence microscopy Electron microscopyNotes
Acknowledgement
The author thanks Prof. Mark Schnitzer for support of this work; Prof. Giorgio Ascoli, Prof. Jeff W. Lichtman, Prof. Yi Zuo, and the two anonymous reviewers for discussions and comments on this manuscript.
References
- Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.PubMedCrossRefGoogle Scholar
- Andres, B., Kothe, U., Helmstaedter, M., Denk, W., & Hamprecht, F. A. (2008). Segmentation of SBFSEM volume data of neural tissue by hierarchical classification. In G. Rigoll (Ed.), Pattern Recognition, 30th DAGM Symposium, Munich, Germany, June 10–13, 2008, Proceedings. Lecture Notes in Computer Science 5096 (pp. 142–152). Springer.Google Scholar
- Anderson, J. R., Mohammed, S., Grimm, B., Jones, B. W., Koshevoy, P., Tasdizen, T., et al. (2011). The Viking viewer for connectomics: scalable multi-user annotation and summarization of large volume data sets. Journal of Microscopy, 241(1), 13–28.PubMedCrossRefGoogle Scholar
- Ascoli, G. A., Donohue, D. E., & Halavi, M. (2007). NeuroMorpho. Org: a central resource for neuronal morphologies. The Journal of Neuroscience, 27(35), 9247–9251.PubMedCrossRefGoogle Scholar
- Bas, E., & Erdogmus, D. (2011). Principal curves as skeletons of tubular objects: locally characterizing the structures of axons. Neuroinformatics. doi: 10.1007/s12021-011-9105-2.
- Betzig, E., Patterson, G. H., Sougrat, R., Lindwasser, O. W., Olenych, S., Bonifacino, J. S., et al. (2006). Imaging intracellular fluorescent proteins at nanometer resolution. Science, 313(5793), 1642–1645.PubMedCrossRefGoogle Scholar
- Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739.PubMedCrossRefGoogle Scholar
- Briggman, K. L., & Denk, W. (2006). Towards neural circuit reconstruction with volume electron microscopy techniques. Current Opinion in Neurobiology, 16(5), 562–570.PubMedCrossRefGoogle Scholar
- Briggman, K. L., Helmstaedter, M., & Denk, W. (2011) Wiring specificity in the direction-selectivity circuit of the mammalian retina. Nature, in press.Google Scholar
- Broser, P. J., Schulte, R., Lang, S., Roth, A., Helmchen, F., Waters, J., et al. (2004). Nonlinear anisotropic diffusion filtering of three-dimensional image data from two-photon microscopy. Journal of Biomedical Optics, 9(6), 1253–1264.PubMedCrossRefGoogle Scholar
- Cai, H. M., Xu, X. Y., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. C. (2006). Repulsive force based snake model to segment and track neuronal axons in 3D microscopy image stacks. Neuroimage, 32(4), 1608–1620.PubMedCrossRefGoogle Scholar
- Cai, H. M., Xu, X. Y., Lu, J., Lichtman, J., Yung, S. P., & Wong, S. T. C. (2008). Using nonlinear diffusion and mean shift to detect and connect cross-sections of axons in 3D optical microscopy images. Medical Image Analysis, 12(6), 666–675.PubMedCrossRefGoogle Scholar
- Cardona, A., Saalfeld, S., Preibisch, S., Schmid, B., Cheng, A., Pulokas, J., et al. (2010). An integrated micro- and macroarchitectural analysis of the Drosophila brain by computer-assisted serial section electron microscopy. PLoS Biology, 8(10).Google Scholar
- Chothani, P., Mehta, V., & Stepanyants, A. (2011). Automated tracing of neurites from light microscopy stacks of images. Neuroinformatics. doi: 10.1007/s12021-011-9121-2.
- Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. Journal of Microscopy, 173, 103–114.PubMedGoogle Scholar
- Conchello, J. A., & Lichtman, J. W. (2005). Optical sectioning microscopy. Nature Methods, 2(12), 920–931.PubMedCrossRefGoogle Scholar
- Cuntz, H., Forstner, F., Haag, J., & Borst, A. (2008). The morphological identity of insect dendrites. PLoS Computational Biology, 4(12), e1000251.PubMedCrossRefGoogle Scholar
- Cuntz, H., Forstner, F., Borst, A., & Hausser, M. (2010). One rule to grow them all: a general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8).Google Scholar
- Dani, A., Huang, B., Bergan, J., Dulac, C., & Zhuang, X. (2010). Superresolution imaging of chemical synapses in the brain. Neuron, 68(5), 843–856.PubMedCrossRefGoogle Scholar
- DeFelipe, J. (2010). From the connectome to the synaptome: an epic love story. Science, 330(6008), 1198–1201.PubMedCrossRefGoogle Scholar
- Denk, W., & Horstmann, H. (2004). Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLoS Biology, 2(11), 1900–1909.CrossRefGoogle Scholar
- Dima, A., Scholz, M., & Obermayer, K. (2002). Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform. IEEE Transactions on Image Processing, 11(7), 790–801.PubMedCrossRefGoogle Scholar
- Dima, A., Scholz, M., & Obermayer, K. (2003). Automatic three-dimensional graph construction of nerve cells from confocal microscopy. Journal of Electronic Imaging, 12(1), 134–150.CrossRefGoogle Scholar
- Feng, G., Mellor, R. H., Bernstein, M., Keller-Peck, C., Nguyen, Q. T., Wallace, M., et al. (2000). Imaging neuronal subsets in transgenic mice expressing multiple spectral variants of GFP. Neuron, 28(1), 41–51.PubMedCrossRefGoogle Scholar
- Fiala, J. C. (2005). Reconstruct: a free editor for serial section microscopy. Journal of Microscopy, 218(Pt 1), 52–61.PubMedCrossRefGoogle Scholar
- Frohn, J. T., Knapp, H. F., & Stemmer, A. (2000). True optical resolution beyond the Rayleigh limit achieved by standing wave illumination. Proceedings of the National Academy of Sciences of the United States of America, 97(13), 7232–7236.PubMedCrossRefGoogle Scholar
- Gan, W. B., Grutzendler, J., Wong, W. T., Wong, R. O., & Lichtman, J. W. (2000). Multicolor "DiOlistic" labeling of the nervous system using lipophilic dye combinations. Neuron, 27(2), 219–225.PubMedCrossRefGoogle Scholar
- Gustafsson, M. G. L. (2000). Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. Journal of Microscopy, 198, 82–87.PubMedCrossRefGoogle Scholar
- Gustafsson, M. G. L. (2005). Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution. Proceedings of the National Academy of Sciences of the United States of America, 102(37), 13081–13086.PubMedCrossRefGoogle Scholar
- He, X., Kischell, E., Rioult, M., & Holmes, T. J. (1998). Three-dimensional thinning algorithm that peels the outmost layer with application to neuron tracing. Journal of Computer-Assisted Microscopy, 10(3), 123–135.CrossRefGoogle Scholar
- He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., et al. (2003). Automated three-dimensional tracing of neurons in confocal and brightfield images. Microscopy and Microanalysis, 9(4), 296–310.PubMedCrossRefGoogle Scholar
- Heintzmann, R., & Gustafsson, M. G. L. (2009). Subdiffraction resolution in continuous samples. Nature Photonics, 3(7), 362–364.CrossRefGoogle Scholar
- Heintzmann, R., Jovin, T. M., & Cremer, C. (2002). Saturated patterned excitation microscopy - a concept for optical resolution improvement. Journal of the Optical Society of America A, 19(8), 1599–1609.CrossRefGoogle Scholar
- Hell, S. W. (2007). Far-field optical nanoscopy. Science, 316(5828), 1153–1158.PubMedCrossRefGoogle Scholar
- Helmchen, F., & Denk, W. (2005). Deep tissue two-photon microscopy. Nature Methods, 2(12), 932–940.PubMedCrossRefGoogle Scholar
- Helmstaedter, M., Briggman, K. L., & Denk, W. (2008). 3D structural imaging of the brain with photons and electrons. Current Opinion in Neurobiology, 18(6), 633–641.PubMedCrossRefGoogle Scholar
- Hess, S. T., Girirajan, T. P. K., & Mason, M. D. (2006). Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophysical Journal, 91(11), 4258–4272.PubMedCrossRefGoogle Scholar
- Jain, V., Seung, H. S., & Turaga, S. C. (2010). Machines that learn to segment images: a crucial technology for connectomics. Current Opinion in Neurobiology, 20, 1–14.CrossRefGoogle Scholar
- Jeong, W. K., Beyer, J., Hadwiger, M., Blue, R., Law, C., Vazquez-Reina, A., et al. (2010). Ssecrett and NeuroTrace: interactive visualization and analysis tools for large-scale neuroscience data sets. IEEE Computer Graphics and Applications, 30(3), 58–70.PubMedCrossRefGoogle Scholar
- Jurrus, E., Hardy, M., Tasdizen, T., Fletcher, P. T., Koshevoy, P., Chien, C. B., et al. (2009). Axon tracking in serial block-face scanning electron microscopy. Medical Image Analysis, 13(1), 180–188.PubMedCrossRefGoogle Scholar
- Jurrus, E., Paiva, A. R., Watanabe, S., Anderson, J. R., Jones, B. W., Whitaker, R. T., et al. (2010). Detection of neuron membranes in electron microscopy images using a serial neural network architecture. Medical Image Analysis, 14(6), 770–783.PubMedCrossRefGoogle Scholar
- Kasthuri, N., & Lichtman, J. W. (2007). The rise of the 'projectome'. Nature Methods, 4(4), 307–308.PubMedCrossRefGoogle Scholar
- Kasthuri, N., Hayworth, K., Lichtman, J., Erdman, N., & Ackerley, C. A. (2007). New technique for ultra-thin serial brain section imaging using scanning electron microscopy. Microscopy and Microanalysis, 13, 26–27.CrossRefGoogle Scholar
- Knott, G., Marchman, H., Wall, D., & Lich, B. (2008). Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. The Journal of Neuroscience, 28(12), 2959–2964.PubMedCrossRefGoogle Scholar
- Lee, P. C., Ching, Y. T., Chang, H. M., & Chiang, A. S. (2008). A semi-automatic method for neuron centerline extraction in confocal microscopic image stack. 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 2008) (pp. 959–962). Paris, France.Google Scholar
- Lee, P. C., Chang, H. M., Lin, C. Y., Chiang, A. S., & Ching, Y. T. (2009). Constructing neuronal structure from 3D confocal microscopic images. Journal of Medical and Biological Engineering, 29(1), 1–6.CrossRefGoogle Scholar
- Lichtman, J. W., & Sanes, J. R. (2008). Ome sweet ome: what can the genome tell us about the connectome? Current Opinion in Neurobiology, 18(3), 346–353.PubMedCrossRefGoogle Scholar
- Lichtman, J. W., Livet, J., & Sanes, J. R. (2008). A technicolour approach to the connectome. Nature Reviews Neuroscience, 9(6), 417–422.PubMedCrossRefGoogle Scholar
- Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., et al. (2007). Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature, 450(7166), 56–62.PubMedCrossRefGoogle Scholar
- Lu, J., Fiala, J. C., & Lichtman, J. W. (2009). Semi-automated reconstruction of neural processes from large numbers of fluorescence images. PLoS ONE, 4(5), e5655.PubMedCrossRefGoogle Scholar
- Lu, J., Tapia, J. C., White, O. L., & Lichtman, J. W. (2009). The interscutularis muscle connectome. PLoS Biology, 7(2), e32.PubMedCrossRefGoogle Scholar
- Luisi, J., Narayanaswamy, A., Galbreath, Z., & Roysam, B. (2011). The FARSIGHT trace editor: an open source tool for 3-D inspection and efficient pattern analysis aided editing of automated neuronal reconstructions. Neuroinformatics. doi: 10.1007/s12021-011-9115-0.
- Macagno, E. R., Lopresti, V., & Levintha, C. (1973). Structure and development of neuronal connections in isogenic organisms - variations and similarities in optic system of Daphnia magna. Proceedings of the National Academy of Sciences of the United States of America, 70(1), 57–61.PubMedCrossRefGoogle Scholar
- Macke, J. H., Maack, N., Gupta, R., Denk, W., Scholkopf, B., & Borst, A. (2008). Contour-propagation algorithms for semi-automated reconstruction of neural processes. Journal of Neuroscience Methods, 167(2), 349–357.PubMedCrossRefGoogle Scholar
- Mayerich, D., & Keyser, J. (2009). Hardware accelerated segmentation of complex volumetric filament networks. IEEE Transactions on Visualization and Computer Graphics, 15(4), 670–681.PubMedCrossRefGoogle Scholar
- Meijering, E. (2010). Neuron tracing in perspective. Cytometry. Part A, 77(7), 693–704.CrossRefGoogle Scholar
- Mishchenko, Y. (2009). Automation of 3D reconstruction of neural tissue from large volume of conventional serial section transmission electron micrographs. Journal of Neuroscience Methods, 176(2), 276–289.PubMedCrossRefGoogle Scholar
- Mishchenko, Y., Hu, T., Spacek, J., Mendenhall, J., Harris, K. M., & Chklovskii, D. B. (2010). Ultrastructural analysis of hippocampal neuropil from the connectomics perspective. Neuron, 67(6), 1009–1020.PubMedCrossRefGoogle Scholar
- Myatt, D. R., & Nasuto, S. J. (2008). Improved automatic midline tracing of neurites with Neuromantic. BMC Neuroscience, 9(Suppl 1), 81.CrossRefGoogle Scholar
- Nagerl, U. V., Willig, K. I., Hein, B., Hell, S. W., & Bonhoeffer, T. (2008). Live-cell imaging of dendritic spines by STED microscopy. Proceedings of the National Academy of Sciences of the United States of America, 105(48), 18982–18987.PubMedCrossRefGoogle Scholar
- Narayanaswamy, A., Wang, Y., & Roysam, B. (2011). 3-D image pre-processing algorithms for improved automated tracing of neuronal arbors. Neuroinformatics. doi: 10.1007/s12021-011-9116-z.
- Peng, H. (2008). Bioimage informatics: a new area of engineering biology. Bioinformatics, 24(17), 1827–1836.PubMedCrossRefGoogle Scholar
- Peng, H., Ruan, Z., Atasoy, D., & Sternson, S. (2010). Automatic reconstruction of 3D neuron structures using a graph-augmented deformable model. Bioinformatics, 26(12), i38–46.PubMedCrossRefGoogle Scholar
- Peng, H., Ruan, Z., Long, F., Simpson, J. H., & Myers, E. W. (2010). V3D enables real-time 3D visualization and quantitative analysis of large-scale biological image data sets. Nature Biotechnology, 28(4), 348–353.PubMedCrossRefGoogle Scholar
- Ramon y Cajal, S. (1995). Histology of the Nervous System of Man and Vertebrates. (trans.) Swanson N. and Swanson L., Oxford University Press.Google Scholar
- Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., et al. (2003). Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods, 30(1), 94–105.PubMedCrossRefGoogle Scholar
- Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2009). Three-dimensional neuron tracing by voxel scooping. Journal of Neuroscience Methods, 184(1), 169–175.PubMedCrossRefGoogle Scholar
- Rust, M. J., Bates, M., & Zhuang, X. W. (2006). Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nature Methods, 3(10), 793–795.PubMedCrossRefGoogle Scholar
- Saetzler, K., McCanny, P., Rodriguez, E. P., Horstmann, H., Bruno, R. M., & Denk, W. (2009). A fuzzy algorithm to trace stained neurons in serial block-face scanning electron microscopy image series. 13th International Machine Vision and Image Processing Conference (IMVIP 2009) (pp. 162–167). Dublin, Ireland.Google Scholar
- Schmitt, S., Evers, J. F., Duch, C., Scholz, M., & Obermayer, K. (2004). New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage, 23(4), 1283–1298.PubMedCrossRefGoogle Scholar
- Sharonov, A., & Hochstrasser, R. M. (2006). Wide-field subdiffraction imaging by accumulated binding of diffusing probes. Proceedings of the National Academy of Sciences of the United States of America, 103(50), 18911–18916.PubMedCrossRefGoogle Scholar
- Sjöstrand, F. S. (1958). Ultrastructure of retinal rod synapses of the guinea pig eye as revealed by 3-dimensional reconstructions from serial sections. Journal of Ultrastructure Research, 2(1), 122–170.PubMedCrossRefGoogle Scholar
- Smith, S. J. (2007). Circuit reconstruction tools today. Current Opinion in Neurobiology, 17(5), 601–608.PubMedCrossRefGoogle Scholar
- Sporns, O., Tononi, G., & Kotter, R. (2005). The human connectome: a structural description of the human brain. PLoS Computational Biology, 1(4), e42.PubMedCrossRefGoogle Scholar
- Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. C. (2007). Automated axon tracking of 3D Confocal laser scanning microscopy images using guided Probabilistic region merging. Neuroinformatics, 5(3), 189–203.PubMedCrossRefGoogle Scholar
- Swedlow, J. R., Goldberg, I. G., & Eliceiri, K. W. (2009). Bioimage informatics for experimental biology. Annual Review of Biophysics, 38, 327–346.PubMedCrossRefGoogle Scholar
- Turaga, S. C., Murray, J. F., Jain, V., Roth, F., Helmstaedter, M., Briggman, K., et al. (2010). Convolutional networks can learn to generate affinity graphs for image segmentation. Neural Computation, 22(2), 511–538.PubMedCrossRefGoogle Scholar
- Türetken, E., González, G., Blum, C., & Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics. doi: 10.1007/s12021-011-9122-1.
- Vasilkoski, Z., & Stepanyants, A. (2009). Detection of the optimal neuron traces in confocal microscopy images. Journal of Neuroscience Methods, 178(1), 197–204.PubMedCrossRefGoogle Scholar
- Vazquez, L., Sapiro, G., & Randall, G. (1998). Segmenting neurons in electronic microscopy via geometric tracing. 1998 International Conference on Image Processing (ICIP’98) (vol. 3, pp. 814–818). Chicago, IL.Google Scholar
- Wang, Y., Narayanaswamy, A., Tsai, C.-L., & Roysam, B. (2011). A broadly applicable 3-D neuron tracing method based on open-curve snake. Neuroinformatics. doi: 10.1007/s12021-011-9110-5.
- Ward, S., Thomson, N., White, J. G., & Brenner, S. (1975). Electron microscopical reconstruction of the anterior sensory anatomy of the nematode Caenorhabditis elegans. The Journal of Comparative Neurology, 160(3), 313–337.PubMedCrossRefGoogle Scholar
- Ware, R. W., & Lopresti, V. (1975). 3-dimensional reconstruction from serial sections. International Review of Cytology, 40, 325–440.PubMedCrossRefGoogle Scholar
- Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., & Hof, P. R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.PubMedCrossRefGoogle Scholar
- Weaver, C. M., Hof, P. R., Wearne, S. L., & Lindquist, W. B. (2004). Automated algorithms for multiscale morphometry of neuronal dendrites. Neural Computation, 16(7), 1353–1383.PubMedCrossRefGoogle Scholar
- White, J. G., Southgate, E., Thomson, J. N., & Brenner, S. (1986). The structure of the nervous system of the nematode Caenorhabditis elegans. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 314, 1–340.CrossRefGoogle Scholar
- Willig, K. I., Kellner, R. R., Medda, R., Hein, B., Jakobs, S., & Hell, S. W. (2006). Nanoscale resolution in GFP-based microscopy. Nature Methods, 3(9), 721–723.PubMedCrossRefGoogle Scholar
- Wilt, B. A., Burns, L. D., Wei Ho, E. T., Ghosh, K. K., Mukamel, E. A., & Schnitzer, M. J. (2009). Advances in light microscopy for neuroscience. Annual Review of Neuroscience, 32, 435–506.PubMedCrossRefGoogle Scholar
- Xu, C. Y., & Prince, J. L. (1998). Snakes, shapes, and gradient vector flow. IEEE Transactions on Image Processing, 7(3), 359–369.PubMedCrossRefGoogle Scholar
- Yuan, X. S., Trachtenberg, J. T., Potter, S. M., & Roysam, B. (2009). MDL constrained 3-D grayscale skeletonization algorithm for automated extraction of dendrites and spines from fluorescence confocal images. Neuroinformatics, 7(4), 213–232.PubMedCrossRefGoogle Scholar
- Yushkevich, P. A., Piven, J., Hazlett, H. C., Smith, R. G., Ho, S., Gee, J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage, 31(3), 1116–1128.PubMedCrossRefGoogle Scholar
- Zhang, Y., Zhou, X., Lu, J., Lichtman, J., Adjeroh, D., & Wong, S. T. (2008). 3D axon structure extraction and analysis in confocal fluorescence microscopy images. Neural Computation, 20(8), 1899–1927.PubMedCrossRefGoogle Scholar
- Zhao, T., Xie, J., Amat, F., Clack, N., Ahammad, P., Peng, H., et al. (2011). Automated reconstruction of neuronal morphology based on local geometrical and global structural models. Neuroinformatics. doi: 10.1007/s12021-011-9120-3.
- Zong, H., Espinosa, J. S., Su, H. H., Muzumdar, M. D., & Luo, L. (2005). Mosaic analysis with double markers in mice. Cell, 121(3), 479–492.PubMedCrossRefGoogle Scholar