Advertisement

Neuroinformatics

, Volume 9, Issue 1, pp 3–19 | Cite as

Optimizing Brain Networks Topologies Using Multi-objective Evolutionary Computation

  • Roberto Santana
  • Concha Bielza
  • Pedro Larrañaga
Article

Abstract

The analysis of brain network topological features has served to better understand these networks and reveal particular characteristics of their functional behavior. The distribution of brain network motifs is particularly useful for detecting and describing differences between brain networks and random and computationally optimized artificial networks. In this paper we use a multi-objective evolutionary optimization approach to generate optimized artificial networks that have a number of topological features resembling brain networks. The Pareto set approximation of the optimized networks is used to extract network descriptors that are compared to brain and random network descriptors. To analyze the networks, the clustering coefficient, the average path length, the modularity and the betweenness centrality are computed. We argue that the topological complexity of a brain network can be estimated using the number of evaluations needed by an optimization algorithm to output artificial networks of similar complexity. For the analyzed network examples, our results indicate that while original brain networks have a reduced structural motif number and a high functional motif number, they are not optimal with respect to these two topological features. We also investigate the correlation between the structural and functional motif numbers, the average path length and the clustering coefficient in random, optimized and brain networks.

Keywords

Brain networks Evolutionary algorithm Network motifs Multi-objective optimization Network optimization 

Notes

Acknowledgments

This work has been partially supported by the Saiotek and Research Groups 2007–2012 (IT-242–07) programs (Basque Government), TIN-2008-06815-C02-02, TIN2007-62626 and Consolider Ingenio 2010 - CSD2007-00018 projects (Spanish Ministry of Science and Innovation), the CajalBlueBrain project, and the COMBIOMED network in computational biomedicine (Carlos III Health Institute).

References

  1. Brockhoff, D., & Zitzler, E. (2006). Dimensionality reduction in multiobjective optimization: The minimum objective subset problem. In K.-H. Waldmann, & U. M. Stocker (Eds.), Operations Research, Proceedings 2006. Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Jointly Organized with the Austrian Society of Operations Research ({"O}GOR) and the Swiss Society of Operations Research (SVOR) (pp. 423–429). Karlsruhe, Germany, September 6–8, 2006.Google Scholar
  2. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10, 1–13.Google Scholar
  3. Cherniak, C. (1994). Component placement optimization in the brain. The Journal of Neuroscience, 14, 2418–2427.PubMedGoogle Scholar
  4. Cherniak, C. (2004). Global optimization of cerebral cortex layout. Proceedings of the National Academy of Sciences (PNAS), 101(4), 1081–1086.CrossRefGoogle Scholar
  5. Costa, L. F., & Sporns, O. (2005). Hierarchical features of large-scale cortical connectivity. The European Physical Journal B, 48(4), 567–573.CrossRefGoogle Scholar
  6. Costa, L. F., Sporns, O., Antiqueira, L., Nunes, M. G. V., Oliveira, M., & Oliveira Jr, O. N. (2007). Correlations between structure and random walk dynamics in directed complex networks. Applied Physics Letters, 91(054107). doi: 10.1063/1.2766683.
  7. Costa, L. F., Kaiser, M., & Hilgetag, C. C. (2007). Predicting the connectivity of primate cortical networks from topological and spatial node properties. BMC Systems Biology, 1(1), 16.CrossRefGoogle Scholar
  8. Costa, L. F., Rodrigues, F. A., Travieso, G., & Boas, P. R. V. (2007). Characterization of complex networks: a survey of measurements. Advances in Physics, 56(1), 167–242.CrossRefGoogle Scholar
  9. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley.Google Scholar
  10. Deb, K., & Saxena, D. K. (2005). On finding Pareto-optimal solutions through dimensionality reduction for certain large-dimensional multi-objective optimization problems. KanGAL Report 2005011, Kanpur Genetic Algorithms Laboratory (KanGAL). Indian Institute of Technology Kanpur.Google Scholar
  11. Defoin-Platel, M., Schliebs, S., & Kasabov, N. (2009). Quantum-inspired evolutionary algorithm: a multimodel EDA. IEEE Transactions on Evolutionary Computation, 13(6), 1218–1232.CrossRefGoogle Scholar
  12. De Lucia, M., Bottaccio, M., Montuori, M., & Pietronero, L. (2005). Topological approach to neural complexity. Physical Review E. Statistical, Nonlinear, and Soft Matter Physics, 71, 016114.CrossRefGoogle Scholar
  13. Dorogovtsev, S. N., Goltsev, A. V., & Mendes, J. F. F. (2008). Critical phenomena in complex networks. Reviews of Modern Physics, 80(4), 1275–1335.CrossRefGoogle Scholar
  14. Druckmann, S., Banitt, Y., Gidon, A., Schuermann, F., Markram, H., & Segev, I. (2007). A novel multiple objective optimization framework for constraining conductance-based neuron models by experimental data. Frontiers in Neuroinformatics, 1(1), 7–18.Google Scholar
  15. Druckmann, S., Berger, T. K., Hill, S., Schuermann, F., Markram, H., & Segev, I. (2007). Evaluating automated parameter constraining procedures of neuron models by experimental and surrogate data. Biological Cybernetics, 99, 371–379.CrossRefGoogle Scholar
  16. Edelman, G. M., & Mountcastle, V. B. (1978). The mindful brain. Cambridge: MIT Press.Google Scholar
  17. Felleman, D. J., & Van Essen, D. C. (1991). Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex, 1, 1–47.PubMedCrossRefGoogle Scholar
  18. Gerken, W. C., Purvis, L. K., & Butera, R. J. (2006). Genetic algorithm for optimization and specification of a neuron model. Neurocomputing, 69, 1039–1042.CrossRefGoogle Scholar
  19. Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley.Google Scholar
  20. Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Ann Arbor: University of Michigan Press.Google Scholar
  21. Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences (PNAS), 104, 10240–10245.CrossRefGoogle Scholar
  22. Kashtan, N., & Alon, U. (2005). Spontaneous evolution of modularity and network motifs. Proceedings of the National Academy of Sciences (PNAS), 102(39), 13773–13778.CrossRefGoogle Scholar
  23. Larrañaga, P., & Lozano, J. A. (Eds.). (2002). Estimation of distribution algorithms. A new tool for evolutionary computation. Boston/Dordrecht/London: Kluwer Academic Publishers.Google Scholar
  24. Leicht, E. A., & Newman, M. E. J. (2008). Community structure in directed networks. Physical Review Letters, 100, 118703.PubMedCrossRefGoogle Scholar
  25. Leskovec, J., Chakrabarti, D., Kleinberg, J., Faloutsos, C., & Gharamani, Z. (2010). Kronecker graphs: an approach to modeling networks. The Journal of Machine Learning Research, 11, 985–1042.Google Scholar
  26. López, A., Coello, C. A., & Chakraborty, D. (2008). Objective reduction using a feature selection technique. In M. Keijzer (Ed.), Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation GECCO-2008 (pp. 673–680). New York: ACM.Google Scholar
  27. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: simple building blocks of complex networks. Science, 298, 824–827.PubMedCrossRefGoogle Scholar
  28. Muhlenbein, H., & Paaß, G. (1996). From recombination of genes to the estimation of distributions I. Binary parameters. In H.-M. Voigt, W. Ebeling, I. Rechenberg, & H.-P. Schwefel (Eds.), Parallel problem solving from nature - PPSN IV, vol. 1141 of lectures notes in computer science (pp. 178–187). Berlin: Springer.CrossRefGoogle Scholar
  29. Pettinen, A., Yli-Harja, O., & Linne, M. L. (2006). Comparison of automated parameter estimation methods for neuronal signaling networks. Neurocomputing, 69, 1371–1374.CrossRefGoogle Scholar
  30. Purshouse, R. C., & Fleming, P. J. (2003). Conflict, harmony and independence: Relationships in evolutionary multicriterion optimisation. In C. M. Fonseca, P. J. Fleming, E. Zitzler, K. Deb, & L. Thiele (Eds.), Evolutionary multi-criterion optimization: Second International Conference, EMO 2003, vol. 2632 of lecture notes in computer science (pp. 16–30). Berlin-Heidelberg: Springer.Google Scholar
  31. Reijneveld, J. C., Ponten, S. C., Berendse, H. W., & Stam, C. J. (2007). The application of graph theoretical analysis to complex networks in the brain. Clinical Neurophysiology, 118(11), 2317–2331.PubMedCrossRefGoogle Scholar
  32. Rodrigues, F. A., & Costa, L. F. (2009). A structure-dynamic approach to cortical organization: number of paths and accessibility. Journal of Neuroscience Methods, 183(1), 57–62.PubMedCrossRefGoogle Scholar
  33. Rodrigues, F. A., & Fontoura Costa, L. (2009). Signal propagation in cortical networks: a digital signal processing approach. Frontiers in Neuroinformatics, 3(24), 1–13.Google Scholar
  34. Santana, R., Larrañaga, P., & Lozano, J. A. (2009). Research topics on discrete estimation of distribution algorithms. Memetic Computing, 1(1), 35–54.CrossRefGoogle Scholar
  35. Santana, R., Bielza, C., Larrañaga, P., Lozano, J. A., Echegoyen, C., Mendiburu, A., et al. (2010). MATEDA: estimation of distribution algorithms in MATLAB. Journal of Statistical Software, 35(7), 1–30.Google Scholar
  36. Sporns, O. (2002). Neuroscience databases. A practical guide, chapter graph theory methods for the analysis of neural connectivity patterns (pp. 171–186). Boston/Dordrecht/London: Kluwer Academic Publisher.Google Scholar
  37. Sporns, O., & Kötter, R. (2004). Motifs in brain networks. PLoS Biology, 2(11), e369.PubMedCrossRefGoogle Scholar
  38. Wang, S. P., Pei, W. J., & He, Z. Y. (2008). Random walks on the neural network of c. elegans. In Proceedings of the 2008 International Conference on Neural Networks and Signal Processing (pp. 142–145).Google Scholar
  39. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of small-world networks. Nature, 393(6684), 440–442.PubMedCrossRefGoogle Scholar
  40. Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of Biological Science, 252(1333), 13–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Roberto Santana
    • 1
  • Concha Bielza
    • 1
  • Pedro Larrañaga
    • 1
  1. 1.Universidad Politécnica de MadridBoadilla del MonteSpain

Personalised recommendations