, Volume 8, Issue 4, pp 213–229 | Cite as

Identification of Imaging Biomarkers in Schizophrenia: A Coefficient-constrained Independent Component Analysis of the Mind Multi-site Schizophrenia Study

  • Dae Il KimEmail author
  • Jing Sui
  • Srinivas Rachakonda
  • Tonya White
  • Dara S. Manoach
  • V. P. Clark
  • Beng-Choon Ho
  • S. Charles Schulz
  • Vince D. CalhounEmail author


A number of recent studies have combined multiple experimental paradigms and modalities to find relevant biological markers for schizophrenia. In this study, we extracted fMRI features maps from the analysis of three experimental paradigms (auditory oddball, Sternberg item recognition, sensorimotor) for a large number (n = 154) of patients with schizophrenia and matched healthy controls. We used the general linear model (GLM) and independent component analysis (ICA) to extract feature maps (i.e. ICA component maps and GLM contrast maps), which were then subjected to a coefficient-constrained independent component analysis (CCICA) to identify potential neurobiological markers. A total of 29 different feature maps were extracted for each subject. Our results show a number of optimal feature combinations that reflect a set of brain regions that significantly discriminate between patients and controls in the spatial heterogeneity and amplitude of their feature signals. Spatial heterogeneity was seen in regions such as the superior/middle temporal and frontal gyri, bilateral parietal lobules, and regions of the thalamus. Most strikingly, an ICA feature representing a bilateral frontal pole network was consistently seen in the ten highest feature results when ranked on differences found in the amplitude of their feature signals. The implication of this frontal pole network and the spatial variability which spans regions comprising of bilateral frontal/temporal lobes and parietal lobules suggests that they might play a significant role in the pathophysiology of schizophrenia.


Schizophrenia Coefficient constrained independent component analysis Independent component analysis fMRI Biomarkers CCICA Working memory Auditory oddball Sensorimotor 



This work was supported by the National Institutes of Health; Contract grant number: 1 RO1 EB 006841. We would like to personally thank Christopher Abbott for his insightful comments on this manuscript.


  1. Andreasen, N. C. (Ed.). (1983). Scale for the Assessment of Negative Symptoms (SANS). Iowa City: University of Iowa.Google Scholar
  2. Andreasen, N. C. (Ed.). (1984). Scale for the Assessment of Positive Symptoms (SAPS). Iowa City: University of Iowa.Google Scholar
  3. Antonova, E., Kumari, V., Morris, R., Halari, R., Anilkumar, A., Mehrotra, R., et al. (2005). The relationship of structural alterations to cognitive deficits in schizophrenia: a voxel-based morphometry study. Biological Psychiatry, 58(6), 457–467.CrossRefPubMedGoogle Scholar
  4. Barta, P. E., Pearlson, G. D., Powers, R. E., Richards, S. S., & Tune, L. E. (1990). Auditory hallucinations and smaller superior temporal gyral volume in schizophrenia. The American Journal of Psychiatry, 147(11), 1457–1462.PubMedGoogle Scholar
  5. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 360(1457), 1001–1013.CrossRefPubMedGoogle Scholar
  6. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.CrossRefPubMedGoogle Scholar
  7. Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. (2008). Default-mode brain dysfunction in mental disorders: A systematic review. Neuroscience and Biobehavioral ReviewsGoogle Scholar
  8. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). A Method for Making Group Inferences from Functional MRI Data Using Independent Component Analysis. Human Brain Mapping, 14(3), 140–151.CrossRefPubMedGoogle Scholar
  9. Calhoun, V. D., Adali, T., Giuliani, N. R., Pekar, J. J., Kiehl, K. A., & Pearlson, G. D. (2006). Method for multimodal analysis of independent source differences in schizophrenia: combining gray matter structural and auditory oddball functional data. Human Brain Mapping, 27(1), 47–62.CrossRefPubMedGoogle Scholar
  10. Calhoun, V. D., Kiehl, K. A., Pearlson, G. D. (2007a). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp In Press.Google Scholar
  11. Calhoun, V. D., Maciejewski, P. K., Pearlson, G. D., Kiehl, K. A. (2007b). Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Human Brain MappingGoogle Scholar
  12. Calhoun, V. D., Kiehl, K. A., Pearlson, G. D. (2008). Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Human Brain Mapping.Google Scholar
  13. Caprihan, A., Pearlson, G. D., & Calhoun, V. D. (2008). Application of principal component analysis to distinguish patients with schizophrenia from healthy controls based on fractional anisotropy measurements. Neuroimage, 42(2), 675–682.CrossRefPubMedGoogle Scholar
  14. Davidson, L. L., & Heinrichs, R. W. (2003). Quantification of frontal and temporal lobe brain-imaging findings in schizophrenia: a meta-analysis. Psychiatry Research, 122(2), 69–87.CrossRefPubMedGoogle Scholar
  15. Ford, J. M. (1999). Schizophrenia: the broken P300 and beyond. Psychophysiology, 36(6), 667–682.CrossRefPubMedGoogle Scholar
  16. Freire, L., Roche, A., & Mangin, J. F. (2002). What is the best similarity measure for motion correction in fMRI time series? IEEE Transactions on Medical Imaging, 21(5), 470–484.CrossRefPubMedGoogle Scholar
  17. Friedman, L., & Glover, G. H. (2006). Reducing interscanner variability of activation in a multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage, 33(2), 471–481.CrossRefPubMedGoogle Scholar
  18. Friedman, L., Stern, H., Brown, G. G., Mathalon, D. H., Turner, J., Glover G. H., et al. (2007). Test-retest and between-site reliability in a multicenter fMRI study. Human Brain Mapping.Google Scholar
  19. Friston, K. (1994). Statistical parametric mapping.Google Scholar
  20. Friston, K. J. (1999). Schizophrenia and the disconnection hypothesis. Acta Psychiatrica Scandinavica. Supplementum, 395, 68–79.CrossRefPubMedGoogle Scholar
  21. Garrity, A. G., Pearlson, G. D., McKiernan, K., Lloyd, D., Kiehl, K. A., & Calhoun, V. D. (2007). Aberrant “default mode” functional connectivity in schizophrenia. The American Journal of Psychiatry, 164(3), 450–457.CrossRefPubMedGoogle Scholar
  22. Glahn, D. C., Ragland, J. D., Abramoff, A., Barrett, J., Laird, A. R., Bearden, C. E., et al. (2005). Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Human Brain Mapping, 25(1), 60–69.CrossRefPubMedGoogle Scholar
  23. Goldman-Rakic, P. S. (1994). Working memory dysfunction in schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 6(4), 348–357.PubMedGoogle Scholar
  24. Goldman-Rakic, P. S., & Selemon, L. D. (1997). Functional and anatomical aspects of prefrontal pathology in schizophrenia. Schizophrenia Bulletin, 23(3), 437–458.PubMedGoogle Scholar
  25. Groom, M. J., Jackson, G. M., Calton, T. G., Andrews, H. K., Bates, A. T., Liddle, P. F., et al. (2008). Cognitive deficits in early-onset schizophrenia spectrum patients and their non-psychotic siblings: a comparison with ADHD. Schizophrenia Research, 99(1–3), 85–95.CrossRefPubMedGoogle Scholar
  26. Hill, K., Mann, L., Laws, K. R., Stephenson, C. M., Nimmo-Smith, I., & McKenna, P. J. (2004). Hypofrontality in schizophrenia: a meta-analysis of functional imaging studies. Acta Psychiatrica Scandinavica, 110(4), 243–256.CrossRefPubMedGoogle Scholar
  27. Himberg, J., Hyvarinen, A., & Esposito, F. (2004). Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage, 22(3), 1214–1222.CrossRefPubMedGoogle Scholar
  28. Kiehl, K. A., Stevens, M., Laurens, K. R., Pearlson, G. D., Calhoun, V. D., & Liddle, P. F. (2005a). An adaptive reflexive processing model of neurocognitive function: Supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. Neuroimage, 25, 899–915.CrossRefGoogle Scholar
  29. Kiehl, K. A., Stevens, M. C., Celone, K., Kurtz, M., & Krystal, J. H. (2005b). Abnormal hemodynamics in schizophrenia during an auditory oddball task. Biological Psychiatry, 57(9), 1029–1040.CrossRefGoogle Scholar
  30. Kim, D. I., Manoach, D. S., Mathalon, D. H., Turner, J. A., Mannell, M., Brown, G. G., et al. (2009a). Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. Human Brain Mapping.Google Scholar
  31. Kim, D. I., Mathalon, D. H., Ford, J. M., Mannell, M., Turner, J. A., Brown, G. G., et al. (2009b). Auditory Oddball Deficits in Schizophrenia: An Independent Component Analysis of the fMRI Multisite Function BIRN Study. Schizophrenia Bulletin, 35(1), 67–81.CrossRefGoogle Scholar
  32. Kindermann, S. S., Karimi, A., Symonds, L., Brown, G. G., & Jeste, D. V. (1997). Review of functional magnetic resonance imaging in schizophrenia. Schizophrenia Research, 27(2–3), 143–156.CrossRefPubMedGoogle Scholar
  33. Laurens, K. R., Kiehl, K. A., Ngan, E. T., & Liddle, P. F. (2005). Attention orienting dysfunction during salient novel stimulus processing in schizophrenia. Schizophrenia Research, 75(2–3), 159–171.CrossRefPubMedGoogle Scholar
  34. Lee, J., & Park, S. (2005). Working memory impairments in schizophrenia: a meta-analysis. Journal of Abnormal Psychology, 114(4), 599–611.CrossRefPubMedGoogle Scholar
  35. Li, Y. O., Adali, T., & Calhoun, V. D. (2007). Estimating the number of independent components for functional magnetic resonance imaging data. Human Brain Mapping, 28(11), 1251–1266.CrossRefPubMedGoogle Scholar
  36. Machado, G., Juarez, M., Clark, V. P., Gollub, R. L., Magnotta, V., White, T., et al. (2007). Probing schizophrenia with a sensorimotor task: Large-scale (n = 273) independent component analysis of first episode and chronic schizophrenia patients.Google Scholar
  37. Manoach, D. S. (2003). Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophrenia Research, 60(2–3), 285–298.CrossRefPubMedGoogle Scholar
  38. Manoach, D. S., Gollub, R. L., Benson, E. S., Searl, M. M., Goff, D. C., Halpern, E., et al. (2000). Schizophrenic subjects show aberrant fMRI activation of dorsolateral prefrontal cortex and basal ganglia during working memory performance. Biological Psychiatry, 48(2), 99–109.CrossRefPubMedGoogle Scholar
  39. Meda, S. A., Bhattarai, M., Morris, N. A., Astur, R. S., Calhoun, V. D., Mathalon, D. H., et al. (2008). An fMRI study of working memory in first-degree unaffected relatives of schizophrenia patients. Schizophrenia Research, 104(1–3), 85–95.CrossRefPubMedGoogle Scholar
  40. Meisenzahl, E. M., Koutsouleris, N., Bottlender, R., Scheuerecker, J., Jager, M., Teipel, S. J., et al. (2008). Structural brain alterations at different stages of schizophrenia: a voxel-based morphometric study. Schizophrenia Research, 104(1–3), 44–60.CrossRefPubMedGoogle Scholar
  41. Meyer-Lindenberg, A., Poline, J. B., Kohn, P. D., Holt, J. L., Egan, M. F., Weinberger, D. R., et al. (2001). Evidence for abnormal cortical functional connectivity during working memory in schizophrenia. The American Journal of Psychiatry, 158(11), 1809–1817.CrossRefPubMedGoogle Scholar
  42. Minzenberg, M. J., Laird, A. R., Thelen, S., Carter, C. S., & Glahn, D. C. (2009). Meta-analysis of 41 functional neuroimaging studies of executive function in schizophrenia. Archives of General Psychiatry, 66(8), 811–822.CrossRefPubMedGoogle Scholar
  43. Park, H. J., Levitt, J., Shenton, M. E., Salisbury, D. F., Kubicki, M., Kikinis, R., et al. (2004). An MRI study of spatial probability brain map differences between first-episode schizophrenia and normal controls. Neuroimage, 22(3), 1231–1246.CrossRefPubMedGoogle Scholar
  44. Pearlson, G. D. (1997). Superior temporal gyrus and planum temporale in schizophrenia: a selective review. Progress in Neuropsychopharmacology & Biological Psychiatry, 21(8), 1203–1229.CrossRefGoogle Scholar
  45. Quintana, J., Wong, T., Ortiz-Portillo, E., Kovalik, E., Davidson, T., Marder, S. R., et al. (2003). Prefrontal-posterior parietal networks in schizophrenia: primary dysfunctions and secondary compensations. Biological Psychiatry, 53(1), 12–24.CrossRefPubMedGoogle Scholar
  46. Schneider, F., Habel, U., Reske, M., Kellermann, T., Stocker, T., Shah, N. J., et al. (2007). Neural correlates of working memory dysfunction in first-episode schizophrenia patients: an fMRI multi-center study. Schizophrenia Research, 89(1–3), 198–210.CrossRefPubMedGoogle Scholar
  47. Schroder, J., Essig, M., Baudendistel, K., Jahn, T., Gerdsen, I., Stockert, A., et al. (1999). Motor dysfunction and sensorimotor cortex activation changes in schizophrenia: A study with functional magnetic resonance imaging. Neuroimage, 9(1), 81–87.CrossRefPubMedGoogle Scholar
  48. Schwarz, J. C. (1971). High School Yearbooks: Further explication and reply to Meehl. Journal of Abnormal Psychology, 78(2), 145–147.CrossRefPubMedGoogle Scholar
  49. Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(736), 652–654.CrossRefPubMedGoogle Scholar
  50. Sui, J., Adali, T., Pearlson, G. D., & Calhoun, V. D. (2009a). An ICA-based method for the identification of optimal FMRI features and components using combined group-discriminative techniques. Neuroimage, 46(1), 73–86.CrossRefGoogle Scholar
  51. Sui, J., Adali, T., Pearlson, G. D., Clark, V. P., & Calhoun, V. D. (2009b). A method for accurate group difference detection by constraining the mixing coefficients in an ICA framework. Human Brain Mapping.Google Scholar
  52. Xu, L., Groth, K. M., Pearlson, G., Schretlen, D. J., & Calhoun, V. D. (2009). Source-based morphometry: the use of independent component analysis to identify gray matter differences with application to schizophrenia. Human Brain Mapping, 30(3), 711–724.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Dae Il Kim
    • 1
    Email author
  • Jing Sui
    • 1
  • Srinivas Rachakonda
    • 1
  • Tonya White
    • 2
  • Dara S. Manoach
    • 3
  • V. P. Clark
    • 1
    • 4
  • Beng-Choon Ho
    • 6
  • S. Charles Schulz
    • 2
  • Vince D. Calhoun
    • 1
    • 5
    Email author
  1. 1.The Mind Research NetworkAlbuquerqueUSA
  2. 2.Department of PsychiatryUniversity of Minnesota Medical CenterMinneapolisUSA
  3. 3.Neuroimaging Division, Department of PsychiatryMassachusetts General HospitalCharlestownUSA
  4. 4.Department of PsychologyUniveristy of New MexicoAlbuquerqueUSA
  5. 5.Department of Electrical EngineeringUniversity of New MexicoAlbuquerqueUSA
  6. 6.Department of PsychiatryUniversity of Iowa College of MedicineIowa CityUSA

Personalised recommendations