, Volume 8, Issue 3, pp 157–170

Oriented Markov Random Field Based Dendritic Spine Segmentation for Fluorescence Microscopy Images

  • Jie Cheng
  • Xiaobo Zhou
  • Eric L. Miller
  • Veronica A. Alvarez
  • Bernardo L. Sabatini
  • Stephen T. C. Wong


Dendritic spines have been shown to be closely related to various functional properties of the neuron. Usually dendritic spines are manually labeled to analyze their morphological changes, which is very time-consuming and susceptible to operator bias, even with the assistance of computers. To deal with these issues, several methods have been recently proposed to automatically detect and measure the dendritic spines with little human interaction. However, problems such as degraded detection performance for images with larger pixel size (e.g. 0.125 μm/pixel instead of 0.08 μm/pixel) still exist in these methods. Moreover, the shapes of detected spines are also distorted. For example, the “necks” of some spines are missed. Here we present an oriented Markov random field (OMRF) based algorithm which improves spine detection as well as their geometric characterization. We begin with the identification of a region of interest (ROI) containing all the dendrites and spines to be analyzed. For this purpose, we introduce an adaptive procedure for identifying the image background. Next, the OMRF model is discussed within a statistical framework and the segmentation is solved as a maximum a posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided iterative conditional mode (KICM) algorithm. Compared with the existing algorithms, the proposed algorithm not only provides a more accurate representation of the spine shape, but also improves the detection performance by more than 50% with regard to reducing both the misses and false detection.


Dendritic spine Segmentation Automatic detection Microscopy image 


  1. Alvarez, V. A., Ridenour, D. A., & Sabatini, B. L. (2006). Retraction of synapses and dendritic spines induced by off-target effects of RNA Interference. Journal of Neuroscience 26(30).Google Scholar
  2. Awate, S. P., & Whitaker, R. T. (2007). Feature-Preserving MRI Denoising: A Nonparametric Empirical Bayes Approach. IEEE Trans Med Imag, 26(9), 1242–1255.CrossRefGoogle Scholar
  3. Bai, W., Zhou, X., Ji, L., Cheng, J., & Wong, S. T. C. (2007). Automatic dendritic spine analysis in twophoton laser scanning microscopy images. Cytometry Part A, 71, 818–826.CrossRefGoogle Scholar
  4. Besag, J. (1986). On the Statistical Analysis of Dirty Pictures. Journal of the Royal Statistical Society Series B, 48(3), 259–302.Google Scholar
  5. Besag, J. (1989). Towards Bayesian Image Analysis. Journal of Applied Statistics, 16(3), 395–407.CrossRefGoogle Scholar
  6. Bilousova, T. V., Dansie, L., Ngo, M., Aye, J., Charles, J. R., Ethell, D. W., et al. (2009). Minocycline promotes dendritic spine maturation and improves behavioural performance in the fragile X mouse model. Journal of Medical Genetics, 46, 94–102.CrossRefPubMedGoogle Scholar
  7. Calhoun, V. D., Adali, T., Pearlson, G. D., & Pekar, J. J. (2001). Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms. Human Brain Mapping, 13, 43–53.CrossRefPubMedGoogle Scholar
  8. Cheng, J., Zhou, X., Miller, E., Witt, R. M., Zhu, J., Sabatini, B. L., et al. (2007). A novel computational approach for automatic dendrite spines detection in two-photon laser scanning microscopy. Journal of Neuroscience Methods, 165, 122–134.CrossRefPubMedGoogle Scholar
  9. D’Elia, C., Marrocco, C., Molinara, M., Possi, G., Scarpa, G., & Tortorella, F. (2004). Detection of microcalcifications clusters in mammograms through TS-MRF segmentation and SVM-based classification. Proceedings of the 17th International Conference on Pattern Recognition, 3, 742–745.Google Scholar
  10. Descombes, X., Kruggel, F., & von Cramon, D. Y. (1998). Spatio-temporal fMRI analysis using Markov random fields. IEEE Transactions on Medical Imaging, 17(6), 1028–1039.CrossRefPubMedGoogle Scholar
  11. Durand, C. M. (2007). Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genetics, 39, 25–27.CrossRefPubMedGoogle Scholar
  12. Fan, J., Zhou, X., Dy, J. G., Zhang, Y., & Wong, S. T. C. (2009). An automated pipeline for dendrite spine detection and tracking of 3D optical microscopy neuron images of in vivo mouse models. Neuroinformatics, 7, 113–130.CrossRefPubMedGoogle Scholar
  13. Fiala, J. C., Spacekb, J., & Harrisa, K. M. (2002). Dendritic Spine Pathology: Cause or Consequence of Neurological Disorders. Brain Research Reviews, 39(1), 29–54.CrossRefPubMedGoogle Scholar
  14. Geman, S., & Geman, D. (1984). Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images. IEEE Transactions Patterns Analysis and Machine Intelligence, 6(6), 721–741.CrossRefGoogle Scholar
  15. Hebert, T. J. (1997). Fast iterative segmentation of high resolution medical images. IEEE Transactions on Nuclear Science, 44(3), 1362–1367.CrossRefGoogle Scholar
  16. Juslin, A., & Tohka, J. (2006). Unsupervised segmentation of cardiac PET transmission images for automatic heart volume extraction. Proc. of the 28th IEEE EMBS ann. int. conf. Aug. 1:1077–80.Google Scholar
  17. Knobloch, M., & Mansuy, I. M. (2008). Dendritic spine loss and synaptic alterations in Alzheimer’s disease. Molecular Neurobiology, 37(1), 73–82.CrossRefPubMedGoogle Scholar
  18. Koh, I. Y., Lindquist, W. B., Zito, K., Nimchinsky, E. A., & Svoboda, K. (2002). An image analysis algorithm for dendritic spines. Neural Computation, 14, 1283–1310.CrossRefPubMedGoogle Scholar
  19. Li, H. D., Kallergi, M., Clarke, L. P., Jain, V. K., & Clark, R. A. (1995). Markov random field for tumor detection in digital mammography. IEEE Transactions Medical Imaging, 14(3), 565–576.CrossRefGoogle Scholar
  20. Li, S. Z. (2001). Markov Random Field Modeling in Image Analysis (2nd ed.). Tokyo, Japan: Springer-Verlag.Google Scholar
  21. Moser, M. B., Trommald, M., & Andersen, P. (1994). An increase in dendritic spine density on hippocampal CA1 pyramidal cells following spatial learning in adult rats suggests the formation of new synapses. Proceedings of the National Academy of Science, 91, 12673–12675.CrossRefGoogle Scholar
  22. Pappas, T. N. (1992). An adaptive clustering algorithm for image segmentation. IEEE Transactions on Signal Processing, 40(4), 901–914.CrossRefGoogle Scholar
  23. Rajapakse, J. C., Wang, Y., Zheng, X., & Zhou, J. (2008). Probabilistic Framework for Brain Connectivity From Functional MR Images. IEEE Transactions on Medical Imaging, 27(6), 825–833.CrossRefPubMedGoogle Scholar
  24. Salli, E., Aronen, H. J., Savolainen, S., Korvenoja, A., Visa, A. (2001). Contextual clustering for analysis of functional MRI data. IEEE Transaction on Medical Imaging 20(5):403–14, May.Google Scholar
  25. Tavazoie, S. F., Alvarez, V. A., Ridenour, D. A., Kwiatkowski, D. J., & Sabatini, B. L. (2005). Regulation of neuronal morphology and function by the tumor suppressors Tsc1 and Tsc2. Nature Neuroscience, 8(12), 1727–1734.CrossRefPubMedGoogle Scholar
  26. Wahlby, C., Lindblad, J., Vondrus, M., Bengtsson, E., & Bjorkesten, L. (2002). Algorithms for cytoplasm segmentation of fluorescence labeled cells. Analytical Cellular Pathology 24.Google Scholar
  27. Weaver, C. M., Hof, P. R., Wearne, S. L., & Lindquist, W. (2004). Automated algorithms for multiscale morphometry of neuronal dendrites, Neural Computation, 16, 1353–1383.CrossRefPubMedGoogle Scholar
  28. Xiao, G., Brady, M., & Noble, J. A. (2002). Segmentation of ultrasound B-mode images with intensity inhomogeneity correction. IEEE Transactions on Medical Imaging, 21(1), 48–57.CrossRefPubMedGoogle Scholar
  29. Xu, X., Cheng, J., Witt, R. M., Sabatini, B. L., & Wong, S. T. C. (2006). A shape analysis method to detect dendritic spine in 3D optical microscopy image. Biomedal Imaging: Macro Nano, 3 rd IEEE International Symposium, 6, 554–557.Google Scholar
  30. Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.CrossRefPubMedGoogle Scholar
  31. Zhang, Y., Zhou, X., Witt, R. M., Sabatini, B. L., Adjeroh, D., & Wong, S. T. C. (2007). Dendritic spine detection using curvilinear structure detector and LDA classifier. Neuroimag, 36, 346–360.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Jie Cheng
    • 1
  • Xiaobo Zhou
    • 1
  • Eric L. Miller
    • 4
  • Veronica A. Alvarez
    • 2
  • Bernardo L. Sabatini
    • 3
  • Stephen T. C. Wong
    • 1
  1. 1.The Center for Bioengineering and Informatics, The Methodist Hospital Research Institute and Department of RadiologyThe Methodist Hospital, Weill Cornell Medical CollegeHoustonUSA
  2. 2.Section on Neuronal Structure (SNS)Laboratory for Integrative Neuroscience (LIN) NIAAA / NIHBethesdaUSA
  3. 3.Department of NeurobiologyHarvard Medical SchoolBostonUSA
  4. 4.Department of Electrical and Computer EngineeringTufts UniversityMedfordUSA

Personalised recommendations