Advertisement

Neuroinformatics

, 7:213 | Cite as

MDL Constrained 3-D Grayscale Skeletonization Algorithm for Automated Extraction of Dendrites and Spines from Fluorescence Confocal Images

  • Xiaosong Yuan
  • Joshua T. Trachtenberg
  • Steve M. Potter
  • Badrinath Roysam
Article

Abstract

This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.

Keywords

Dendritic spines Minimum description length Grayscale 3-D skeletonization 3-D morphology Graph theory 3-D microscopy 

Notes

Acknowledgements

The image analysis aspects of this work were supported by NIH Biomedical Research Partnerships Grant R01 EB005157, by the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number EEC-9986821), and by Rensselaer Polytechnic Institute. The Potter laboratory images were collected by SMP and David Kantor in collaboration with Erin Schuman and Scott Fraser. Trachtenberg lab work was supported by NIMH grant P50 MH077972.

Supplementary material

12021_2009_9057_MOESM1_ESM.zip (1.3 mb)
ESM 1 (ZIP 1.25 mb)
12021_2009_9057_MOESM2_ESM.ppt (6.2 mb)
ESM 2 (PPT 6.15 mb)
12021_2009_9057_MOESM3_ESM.doc (128 kb)
ESM 3 Table of adjustable parameters used in the software, and their descriptions (DOC 127 kb)

References

  1. Abdul-Karim, M. A. (2005). Automated parameter selection for segmentation of tube-like biological structures using optimization algorithm and MDL. 2005 Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY 12180.Google Scholar
  2. Abdul-Karim, M. A., Al-Kofahi, K., Brown, E. B., Jain, R. K., & Roysam, B. (2003). Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series. Microvascular Research, 66(2), 113–125.CrossRefPubMedGoogle Scholar
  3. Abdul-Karim, M. A., Roysam, B., Dowell-Mesfin, N. M., Jeromin, A., Yuksel, M., & Kalyanaraman, S. (2005). Automatic selection of parameters for vessel/neurite segmentation algorithms. IEEE Transactions on Image Processing, 14(9), 1338–1350.CrossRefPubMedGoogle Scholar
  4. Al-Kofahi, K. A., Can, A., Lasek, S., Szarowski, D. H., Dowell-Mesfin, N., Shain, W., et al. (2003). Median-based robust algorithms for tracing neurons from noisy confocal microscope images. IEEE Transactions on Information Technology in Biomedicine, 7(4), 302–317.CrossRefPubMedGoogle Scholar
  5. Al-Kofahi, Y., Dowell-Mesfin, N., Pace, C., Shain, W., Turner, J. N., & Roysam, B. (2008). Improved detection of branching points in algorithms for automated neuron tracing from 3-D confocal images. Cytometry A, 73(1), 36–43.PubMedGoogle Scholar
  6. Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.CrossRefPubMedGoogle Scholar
  7. Bai, W., Zhou, X., Ji, L., Cheng, J., & Wong, S. T. (2007). Automatic dendritic spine analysis in two-photon laser scanning microscopy images. Cytometry A, 71(10), 818–826.PubMedGoogle Scholar
  8. Barron, A., Rissanen, J., & Yu, B. (1998). The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 44(6), 2743–2760.CrossRefGoogle Scholar
  9. Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT.Google Scholar
  10. Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications. New York: Elsevier Science.Google Scholar
  11. Bouman, C., & Sauer, K. (1993). A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing, 2(3), 296–310.CrossRefPubMedGoogle Scholar
  12. Cai, H., Xu, X., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3-D microscopy image stacks. Neuroimage, 32(4), 1608–1620.CrossRefPubMedGoogle Scholar
  13. Cajal, S. R. Y. (1888). Estructura de los centros nervioso de las aves. Rev Trim Hitol norm Pat, 1, 1–10.Google Scholar
  14. Cajal, S. R. Y. (1891). Sur la structure de l’ecorce cerebrale de quelques mammiferes. Cellule, 7, 123–176.Google Scholar
  15. Can, A., Shen, H., Turner, J. N., Tanenbaum, H. L., & Roysam, B. (1999). Rapid automated tracing and feature extraction from live high-resolution retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 3(2), 125–138.CrossRefPubMedGoogle Scholar
  16. Capowski, J. J. (ed). (1989). Computer techniques in neuroanatomy. New York: Plenum.Google Scholar
  17. Carlsson, K., Wallen, P., & Brodin, L. (1989). Three-dimensional imaging of neurons by confocal fluorescence microscopy. Journal de Microscopie, 155(Pt 1), 15–26.Google Scholar
  18. Cesar, R. M., Jr., & Costa, L. F. (1999). Semi-automated dendrogram generation for neural shape analysis. Journal of Neuroscience Methods, 93, 121–131.CrossRefPubMedGoogle Scholar
  19. Cham, T. J., & Cipolla, R. (1999). Automated B-Spline curve representation incorporating MDL and error-minimizing control point insertion strategies. IEEE Transactions on Pattern analysis and Machine Intelligence, 21(1), 49–53.CrossRefGoogle Scholar
  20. Cheng, J., Zhou, X., Miller, E., Witt, R. M., Zhu, J., Sabatini, B. L., et al. (2007a). A novel computational approach for automatic dendrite spines detection in two-photon laser scan microscopy. Journal of Neuroscience Methods, 165(1), 122–134.CrossRefGoogle Scholar
  21. Cheng, J., Zhou, X., Sabatini, B. L., & Wong, S. T. (2007b). NeuronIQ: a novel computational approach for automatic dendrite splines detection and analysis. IEEE/NIH Life Science Systems and Applications Workshop (LISSA 2007) pp. 168–71.Google Scholar
  22. Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. Journal de Microscopie, 173(Pt 2), 103–114.Google Scholar
  23. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed., pp. 595–601). Cambridge: MIT.Google Scholar
  24. Cornea, N. D., Silver, D., Yuan, X., & Balasubramanian, R. (2005). Computing hierarchical curve-skeletons of 3-D objects. The Visual Computer, 21(11), 945–955.CrossRefGoogle Scholar
  25. Costa, L. Da F., Manoel, E. T., Faucereau, F., Chelly, J., van Pelt, J., & Ramakers, G. (2002). Shape analysis framework for neuromorphometry. Network, 13(3), 283–310.CrossRefGoogle Scholar
  26. Dierckx, P. (1993). Curve and surface fitting with splines. Oxford: Clarendon.Google Scholar
  27. Dowell-Mesfin, N. M., Abdul-Karim, M. A., Turner, A. M., Schanz, S., Craighead, H. G., Roysam, B., et al. (2004). Topographically modified surfaces affect orientation and growth of hippocampal neurons. Journal of Neural Engineering, 1(2), 78–90.CrossRefPubMedGoogle Scholar
  28. Falcao, A. X., Costa, L. F., & da Cunha, B. S. (2002). Multiscale skeletons by image foresting transform and its application to neuromorphometry. Pattern Recognition, 35(7), 1571–1582.CrossRefGoogle Scholar
  29. Frangi, A. F., Niessen, W. J., Hoogeveen, R. M., Walsum, T. V., & Viergever, M. A. (1999). Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 18(10), 946–956.CrossRefPubMedGoogle Scholar
  30. Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention, 1496, 130–137.Google Scholar
  31. Glaser, E. M., Tagamets, M., McMullen, N. T., & Van der Loos, H. (1983). The image-combining computer microscope—an interactive instrument for morphometry of the nervous system. Journal of Neuroscience Methods, 8(1), 17–32.CrossRefPubMedGoogle Scholar
  32. Globus, A., Levit, C., & Lasinski, T. (1991) A tool for visualizing the topology of three-dimensional vector fields. IEEE Visualization, 33–40Google Scholar
  33. Grunwald, P., Myung, J., & Pitt, M. (2004). Advances in minimum description length: Theory and applications. Cambridge: MIT Press.Google Scholar
  34. Guéziec, A., & Ayache, N. (1994). Smoothing and matching of 3-D space curves. International Journal of Computer Vision, 12(1), 79–104.CrossRefGoogle Scholar
  35. Gulledge, A. T., Kampa, B. M., & Stuart, G. J. (2005). Synaptic integration in dendritic trees. Journal of Neurobiology, 64, 75–90.CrossRefPubMedGoogle Scholar
  36. He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., et al. (2003). Automated three-dimensional tracing of neurons in confocal and brightfield images. Microscopy and Microanalysis, 9(4), 296–310.CrossRefPubMedGoogle Scholar
  37. Herzog, A., Krell, G., Michaelis, B., Wang, J., Zuschratter, W., & Braun, K. (1997). Restoration of three-dimensional quasi-binary images from confocal microscopy and its application to dendritic trees. BiOS. San Jose, 8–14.Google Scholar
  38. Holmes, T. J., Bhattacharyya, S., Cooper, J. A., Hanzel, D., Krishnamurthi, V., Lin, W., et al. (1995). Light microscopic images reconstructed by maximum likelihood deconvolution. In J. Pawley (Ed.), Handbook of confocal microscopy. New York: Plenum.Google Scholar
  39. Janoos, F., Nouansengsy, B., Xu, X., MacHiraju, R., & Wong, S. T. C. (2008). Classification and uncertainty visualization of dendritic spines from optical microscopy imaging. Computer Graphics Forum, 27(3), 879–886.CrossRefGoogle Scholar
  40. Kalus, P., Muller, T. J., Zuschratter, W., & Senitz, D. (2000). The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. NeuroReport, 11(16), 3621–3625.CrossRefPubMedGoogle Scholar
  41. Kirbas, C., & Quek, F. (2004). A review of vessel extraction techniques and algorithms. ACM Computing Surveys, 36(2), 81–121.CrossRefGoogle Scholar
  42. Koh, I. Y., Lindquist, W. B., Zito, K., Nimchinsky, E. A., & Svoboda, K. (2002). An image analysis algorithm for dendritic spines. Neural Computation, 14(6), 1283–1310.CrossRefPubMedGoogle Scholar
  43. Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision, 3(1), 73–102.CrossRefGoogle Scholar
  44. Lippman, J., & Dunaevsky, A. (2005). Dendritic spine morphogenesis and plasticity. Journal of Neurobiology, 64(1), 47–57.Google Scholar
  45. Lolive, D., Barbot, N., & Boeffard, O. (2006). Melodic contour estimation with B-spline models using a MDL criterion. Proceedings of the 11th International Conference on Speech and Computer (SPECOM) (pp. 333-338). Saint Petersburg, RussiaGoogle Scholar
  46. London, M., & Hausser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.CrossRefPubMedGoogle Scholar
  47. Losavio, B. E., Liang, Y., Santamaria-Pang, A., Kakadiaris, I. A., Colbert, C. M., & Saggau, P. (2008). Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. Journal of Neurophysiology, 100, 2422–2429.CrossRefPubMedGoogle Scholar
  48. Lu, F., & Milios, E. (1994). Optimal spline fitting to planar shape. Signal Processing, 37, 129–140.CrossRefGoogle Scholar
  49. Matsuzaki, M. (2007). Factors critical for the plasticity of dendritic spines and memory storage. Neuroscience Research, 57, 1–9.CrossRefPubMedGoogle Scholar
  50. Meijering, E., Jacob, M., Sarria, J. C., Steiner, Pl, Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry, 58A(2), 167–176.CrossRefGoogle Scholar
  51. Mel, B. W. (1994). Information-processing in dendritic trees. Neural Computation, 6, 1031–1085.CrossRefGoogle Scholar
  52. Miller, M. I., Roysam, B., Smith, K. R., & O'Sullivan, J. A. (1991). Representing and computing regular languages on massively parallel networks. IEEE Transactions on Neural Networks, 2(1), 56–72.CrossRefPubMedGoogle Scholar
  53. Pawley, J. B. (2006). Handbook of biological confocal microscopy (3rd ed.) Springer.Google Scholar
  54. Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRefGoogle Scholar
  55. Potter, S. M. (1996). Vital imaging: two photons are better than one. Current Biology, 6(12), 1595–1598.CrossRefPubMedGoogle Scholar
  56. Potter, S. M. (2005). Two-photon microscopy for 4D imaging of living neurons. In R. Yuste & A. Konnerth (Eds.), Imaging in neuroscience and development: A laboratory manual (pp. 59–70). Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
  57. Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.CrossRefGoogle Scholar
  58. Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2006). Rayburst sampling. An algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. National Protocol, 1(4), 2152–2161.CrossRefGoogle Scholar
  59. Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., et al. (2003). Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods, 30(1), 94–105.CrossRefPubMedGoogle Scholar
  60. Rogers, D. F. (1998). Procedural elements for computer graphics. Boston: McGraw-Hill.Google Scholar
  61. Rolston, J. D., Wagenaar, D. A., & Potter, S. M. (2007). Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience, 148(1), 294–303.CrossRefPubMedGoogle Scholar
  62. Satou, K., Aoki, Y., Mataga, N., Hensh, T. K., & Taki, K. (2005). Automatic analysis for neuron by confocal laser scanning microscope. Optomechatronic Machine Vision, Proceedings of SPIE, 6051.Google Scholar
  63. Schmitt, S., Evers, J. F., Duch, C., Scholz, M., & Obermayer, K. (2004). New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage, 23(4), 1283–1298.CrossRefPubMedGoogle Scholar
  64. Schroeder, W., Martin, K., & Lorensen, B. (1998). The visualization toolkit: An object oriented approach to 3-D graphics. Printice-Hall Inc.Google Scholar
  65. Schumaker, L. L. (1981). Spine functions: Basic theory. New York: Wiley.Google Scholar
  66. Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.Google Scholar
  67. Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. (2007). Automated axon tracking of 3-D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinformatics, 5(3), 189–203.CrossRefPubMedGoogle Scholar
  68. Theisel, H., & Weinkauf, T. (2002). Vector field metrics based on distance measures of first order critical points. Journal of WSCG, 10(3).Google Scholar
  69. Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., et al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420(6917), 788–794.CrossRefPubMedGoogle Scholar
  70. Turner, J. N., Szarowski, D. H., Smith, K. L., Marko, M., Leith, A., & Swann, J. W. (1991). Confocal microscopy and three-dimensional reconstruction of electrophysiologically identified neurons in thick brain slices. Journal of Electron Microscopy Technique, 18(1), 11–23.CrossRefPubMedGoogle Scholar
  71. Turner, J. N., Szarowski, D. H., Turner, T. J., Ancin, H., Lin, W. C., Roysam, B., et al. (1994). Three-dimensional imaging and image analysis of hippocampal neurons: confocal and digitally enhanced wide field microscopy. Microscopy Research and Technique, 29(4), 269–278.CrossRefPubMedGoogle Scholar
  72. Tyrrell, J. A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R. K., et al. (2007). Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Transactions on Medical Imaging, 26(2), 223–237.CrossRefPubMedGoogle Scholar
  73. Tyrrell, J. A., Mahadevan, V., Tong, R. T., Brown, E. B., Jain, R. K., & Roysam, B. (2005). A 2-D/3-D model-based method to quantify the complexity of microvasculature imaged by in vivo multiphoton microscopy. Microvascular Research, 70(3), 165–178.CrossRefPubMedGoogle Scholar
  74. Vliet, L. J. V. (1993). Grey-scale measurements in multi-dimensional digitized images. Ph.D. Thesis of the Pattern Recognition Group, Delft University of Technology, The Netherlands.Google Scholar
  75. Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., & Hof, P. R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.CrossRefPubMedGoogle Scholar
  76. Weaver, C. M., Hof, P. R., Wearne, S. L., & Lindquist, W. B. (2004). Automated algorithms for multiscale morphometry of neuronal dendrites. Neural Computation, 16(7), 1353–1383.CrossRefPubMedGoogle Scholar
  77. Wu, C. C., Reilly, J. F., Young, W. G., Morrison, J. H., & Bloom, F. E. (2004). High-throughput morphometric analysis of individual neurons. Cerebral Cortex, 14(5), 543–554.CrossRefPubMedGoogle Scholar
  78. Xiong, G., Zhou, X., Degterev, A., Ji, L., & Wong, S. T. (2006). Automated neurite labeling and analysis in fluorescence microscopy images. Cytometry A, 69(6), 494–505.PubMedGoogle Scholar
  79. Xu, X., & Wong, S. T. (2006). Optical microscopic image processing of dendritic spines morphology. IEEE Signal Processing Magazine, 23(4), 132–135.CrossRefGoogle Scholar
  80. Yu, Z., & Bajaj, C. (2004). A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion. Computer Vision and Pattern Recognition, CVPR. Proceedings of the 2004 IEEE Computer Society Conference on, 1, 415–20.Google Scholar
  81. Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.CrossRefPubMedGoogle Scholar
  82. Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan, J., et al. (2007a). A novel tracing algorithm for high throughput imaging screening of neuron-based assays. Journal of Neuroscience Methods, 160(1), 149–162.CrossRefPubMedGoogle Scholar
  83. Zhang, Y., Zhou, X., Witt, R. M., Sabatini, B. L., Adjeroh, D., & Wong, S. T. (2007b). Automated spine detection using curvilinear structure detector and LDA Classifier. Biomedical Imaging: From Nano to Macro, ISBI. 4th IEEE International Symposium on, pp. 528–531.Google Scholar
  84. Zhang, Y., Zhou, X., Witt, R. M., Sabatini, B. L., Adjeroh, D., & Wong, S. T. (2007c). Dendritic spine detection using curvilinear structure detector and LDA classifier. Neuroimage, 36(2), 346–360.CrossRefPubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Xiaosong Yuan
    • 1
  • Joshua T. Trachtenberg
    • 2
  • Steve M. Potter
    • 3
  • Badrinath Roysam
    • 1
  1. 1.Jonsson Engineering Center, Center for Subsurface Sensing & Imaging SystemsRensselaer Polytechnic InstituteTroyUSA
  2. 2.Department of NeurobiologyDavid Geffen School of MedicineLos AngelesUSA
  3. 3.Laboratory for Neuroengineering, Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations