MDL Constrained 3-D Grayscale Skeletonization Algorithm for Automated Extraction of Dendrites and Spines from Fluorescence Confocal Images
- 760 Downloads
- 31 Citations
Abstract
This paper presents a method for improved automatic delineation of dendrites and spines from three-dimensional (3-D) images of neurons acquired by confocal or multi-photon fluorescence microscopy. The core advance presented here is a direct grayscale skeletonization algorithm that is constrained by a structural complexity penalty using the minimum description length (MDL) principle, and additional neuroanatomy-specific constraints. The 3-D skeleton is extracted directly from the grayscale image data, avoiding errors introduced by image binarization. The MDL method achieves a practical tradeoff between the complexity of the skeleton and its coverage of the fluorescence signal. Additional advances include the use of 3-D spline smoothing of dendrites to improve spine detection, and graph-theoretic algorithms to explore and extract the dendritic structure from the grayscale skeleton using an intensity-weighted minimum spanning tree (IW-MST) algorithm. This algorithm was evaluated on 30 datasets organized in 8 groups from multiple laboratories. Spines were detected with false negative rates less than 10% on most datasets (the average is 7.1%), and the average false positive rate was 11.8%. The software is available in open source form.
Keywords
Dendritic spines Minimum description length Grayscale 3-D skeletonization 3-D morphology Graph theory 3-D microscopyNotes
Acknowledgements
The image analysis aspects of this work were supported by NIH Biomedical Research Partnerships Grant R01 EB005157, by the Bernard M. Gordon Center for Subsurface Sensing and Imaging Systems, under the Engineering Research Centers Program of the National Science Foundation (Award Number EEC-9986821), and by Rensselaer Polytechnic Institute. The Potter laboratory images were collected by SMP and David Kantor in collaboration with Erin Schuman and Scott Fraser. Trachtenberg lab work was supported by NIMH grant P50 MH077972.
Supplementary material
References
- Abdul-Karim, M. A. (2005). Automated parameter selection for segmentation of tube-like biological structures using optimization algorithm and MDL. 2005 Ph.D. dissertation, Rensselaer Polytechnic Institute, Troy, NY 12180.Google Scholar
- Abdul-Karim, M. A., Al-Kofahi, K., Brown, E. B., Jain, R. K., & Roysam, B. (2003). Automated tracing and change analysis of angiogenic vasculature from in vivo multiphoton confocal image time series. Microvascular Research, 66(2), 113–125.CrossRefPubMedGoogle Scholar
- Abdul-Karim, M. A., Roysam, B., Dowell-Mesfin, N. M., Jeromin, A., Yuksel, M., & Kalyanaraman, S. (2005). Automatic selection of parameters for vessel/neurite segmentation algorithms. IEEE Transactions on Image Processing, 14(9), 1338–1350.CrossRefPubMedGoogle Scholar
- Al-Kofahi, K. A., Can, A., Lasek, S., Szarowski, D. H., Dowell-Mesfin, N., Shain, W., et al. (2003). Median-based robust algorithms for tracing neurons from noisy confocal microscope images. IEEE Transactions on Information Technology in Biomedicine, 7(4), 302–317.CrossRefPubMedGoogle Scholar
- Al-Kofahi, Y., Dowell-Mesfin, N., Pace, C., Shain, W., Turner, J. N., & Roysam, B. (2008). Improved detection of branching points in algorithms for automated neuron tracing from 3-D confocal images. Cytometry A, 73(1), 36–43.PubMedGoogle Scholar
- Al-Kofahi, K. A., Lasek, S., Szarowski, D. H., Pace, C. J., Nagy, G., Turner, J. N., et al. (2002). Rapid automated three-dimensional tracing of neurons from confocal image stacks. IEEE Transactions on Information Technology in Biomedicine, 6(2), 171–187.CrossRefPubMedGoogle Scholar
- Bai, W., Zhou, X., Ji, L., Cheng, J., & Wong, S. T. (2007). Automatic dendritic spine analysis in two-photon laser scanning microscopy images. Cytometry A, 71(10), 818–826.PubMedGoogle Scholar
- Barron, A., Rissanen, J., & Yu, B. (1998). The minimum description length principle in coding and modeling. IEEE Transactions on Information Theory, 44(6), 2743–2760.CrossRefGoogle Scholar
- Blake, A., & Zisserman, A. (1987). Visual reconstruction. Cambridge: MIT.Google Scholar
- Bondy, J. A., & Murty, U. S. R. (1976). Graph theory with applications. New York: Elsevier Science.Google Scholar
- Bouman, C., & Sauer, K. (1993). A generalized Gaussian image model for edge-preserving MAP estimation. IEEE Transactions on Image Processing, 2(3), 296–310.CrossRefPubMedGoogle Scholar
- Cai, H., Xu, X., Lu, J., Lichtman, J. W., Yung, S. P., & Wong, S. T. (2006). Repulsive force based snake model to segment and track neuronal axons in 3-D microscopy image stacks. Neuroimage, 32(4), 1608–1620.CrossRefPubMedGoogle Scholar
- Cajal, S. R. Y. (1888). Estructura de los centros nervioso de las aves. Rev Trim Hitol norm Pat, 1, 1–10.Google Scholar
- Cajal, S. R. Y. (1891). Sur la structure de l’ecorce cerebrale de quelques mammiferes. Cellule, 7, 123–176.Google Scholar
- Can, A., Shen, H., Turner, J. N., Tanenbaum, H. L., & Roysam, B. (1999). Rapid automated tracing and feature extraction from live high-resolution retinal fundus images using direct exploratory algorithms. IEEE Transactions on Information Technology in Biomedicine, 3(2), 125–138.CrossRefPubMedGoogle Scholar
- Capowski, J. J. (ed). (1989). Computer techniques in neuroanatomy. New York: Plenum.Google Scholar
- Carlsson, K., Wallen, P., & Brodin, L. (1989). Three-dimensional imaging of neurons by confocal fluorescence microscopy. Journal de Microscopie, 155(Pt 1), 15–26.Google Scholar
- Cesar, R. M., Jr., & Costa, L. F. (1999). Semi-automated dendrogram generation for neural shape analysis. Journal of Neuroscience Methods, 93, 121–131.CrossRefPubMedGoogle Scholar
- Cham, T. J., & Cipolla, R. (1999). Automated B-Spline curve representation incorporating MDL and error-minimizing control point insertion strategies. IEEE Transactions on Pattern analysis and Machine Intelligence, 21(1), 49–53.CrossRefGoogle Scholar
- Cheng, J., Zhou, X., Miller, E., Witt, R. M., Zhu, J., Sabatini, B. L., et al. (2007a). A novel computational approach for automatic dendrite spines detection in two-photon laser scan microscopy. Journal of Neuroscience Methods, 165(1), 122–134.CrossRefGoogle Scholar
- Cheng, J., Zhou, X., Sabatini, B. L., & Wong, S. T. (2007b). NeuronIQ: a novel computational approach for automatic dendrite splines detection and analysis. IEEE/NIH Life Science Systems and Applications Workshop (LISSA 2007) pp. 168–71.Google Scholar
- Cohen, A. R., Roysam, B., & Turner, J. N. (1994). Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data. Journal de Microscopie, 173(Pt 2), 103–114.Google Scholar
- Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed., pp. 595–601). Cambridge: MIT.Google Scholar
- Cornea, N. D., Silver, D., Yuan, X., & Balasubramanian, R. (2005). Computing hierarchical curve-skeletons of 3-D objects. The Visual Computer, 21(11), 945–955.CrossRefGoogle Scholar
- Costa, L. Da F., Manoel, E. T., Faucereau, F., Chelly, J., van Pelt, J., & Ramakers, G. (2002). Shape analysis framework for neuromorphometry. Network, 13(3), 283–310.CrossRefGoogle Scholar
- Dierckx, P. (1993). Curve and surface fitting with splines. Oxford: Clarendon.Google Scholar
- Dowell-Mesfin, N. M., Abdul-Karim, M. A., Turner, A. M., Schanz, S., Craighead, H. G., Roysam, B., et al. (2004). Topographically modified surfaces affect orientation and growth of hippocampal neurons. Journal of Neural Engineering, 1(2), 78–90.CrossRefPubMedGoogle Scholar
- Falcao, A. X., Costa, L. F., & da Cunha, B. S. (2002). Multiscale skeletons by image foresting transform and its application to neuromorphometry. Pattern Recognition, 35(7), 1571–1582.CrossRefGoogle Scholar
- Frangi, A. F., Niessen, W. J., Hoogeveen, R. M., Walsum, T. V., & Viergever, M. A. (1999). Model-based quantitation of 3-D magnetic resonance angiographic images. IEEE Transactions on Medical Imaging, 18(10), 946–956.CrossRefPubMedGoogle Scholar
- Frangi, A. F., Niessen, W. J., Vincken, K. L., & Viergever, M. A. (1998). Multiscale vessel enhancement filtering. Medical Image Computing and Computer-Assisted Intervention, 1496, 130–137.Google Scholar
- Glaser, E. M., Tagamets, M., McMullen, N. T., & Van der Loos, H. (1983). The image-combining computer microscope—an interactive instrument for morphometry of the nervous system. Journal of Neuroscience Methods, 8(1), 17–32.CrossRefPubMedGoogle Scholar
- Globus, A., Levit, C., & Lasinski, T. (1991) A tool for visualizing the topology of three-dimensional vector fields. IEEE Visualization, 33–40Google Scholar
- Grunwald, P., Myung, J., & Pitt, M. (2004). Advances in minimum description length: Theory and applications. Cambridge: MIT Press.Google Scholar
- Guéziec, A., & Ayache, N. (1994). Smoothing and matching of 3-D space curves. International Journal of Computer Vision, 12(1), 79–104.CrossRefGoogle Scholar
- Gulledge, A. T., Kampa, B. M., & Stuart, G. J. (2005). Synaptic integration in dendritic trees. Journal of Neurobiology, 64, 75–90.CrossRefPubMedGoogle Scholar
- He, W., Hamilton, T. A., Cohen, A. R., Holmes, T. J., Pace, C., Szarowski, D. H., et al. (2003). Automated three-dimensional tracing of neurons in confocal and brightfield images. Microscopy and Microanalysis, 9(4), 296–310.CrossRefPubMedGoogle Scholar
- Herzog, A., Krell, G., Michaelis, B., Wang, J., Zuschratter, W., & Braun, K. (1997). Restoration of three-dimensional quasi-binary images from confocal microscopy and its application to dendritic trees. BiOS. San Jose, 8–14.Google Scholar
- Holmes, T. J., Bhattacharyya, S., Cooper, J. A., Hanzel, D., Krishnamurthi, V., Lin, W., et al. (1995). Light microscopic images reconstructed by maximum likelihood deconvolution. In J. Pawley (Ed.), Handbook of confocal microscopy. New York: Plenum.Google Scholar
- Janoos, F., Nouansengsy, B., Xu, X., MacHiraju, R., & Wong, S. T. C. (2008). Classification and uncertainty visualization of dendritic spines from optical microscopy imaging. Computer Graphics Forum, 27(3), 879–886.CrossRefGoogle Scholar
- Kalus, P., Muller, T. J., Zuschratter, W., & Senitz, D. (2000). The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. NeuroReport, 11(16), 3621–3625.CrossRefPubMedGoogle Scholar
- Kirbas, C., & Quek, F. (2004). A review of vessel extraction techniques and algorithms. ACM Computing Surveys, 36(2), 81–121.CrossRefGoogle Scholar
- Koh, I. Y., Lindquist, W. B., Zito, K., Nimchinsky, E. A., & Svoboda, K. (2002). An image analysis algorithm for dendritic spines. Neural Computation, 14(6), 1283–1310.CrossRefPubMedGoogle Scholar
- Leclerc, Y. G. (1989). Constructing simple stable descriptions for image partitioning. International Journal of Computer Vision, 3(1), 73–102.CrossRefGoogle Scholar
- Lippman, J., & Dunaevsky, A. (2005). Dendritic spine morphogenesis and plasticity. Journal of Neurobiology, 64(1), 47–57.Google Scholar
- Lolive, D., Barbot, N., & Boeffard, O. (2006). Melodic contour estimation with B-spline models using a MDL criterion. Proceedings of the 11th International Conference on Speech and Computer (SPECOM) (pp. 333-338). Saint Petersburg, RussiaGoogle Scholar
- London, M., & Hausser, M. (2005). Dendritic computation. Annual Review of Neuroscience, 28, 503–532.CrossRefPubMedGoogle Scholar
- Losavio, B. E., Liang, Y., Santamaria-Pang, A., Kakadiaris, I. A., Colbert, C. M., & Saggau, P. (2008). Live neuron morphology automatically reconstructed from multiphoton and confocal imaging data. Journal of Neurophysiology, 100, 2422–2429.CrossRefPubMedGoogle Scholar
- Lu, F., & Milios, E. (1994). Optimal spline fitting to planar shape. Signal Processing, 37, 129–140.CrossRefGoogle Scholar
- Matsuzaki, M. (2007). Factors critical for the plasticity of dendritic spines and memory storage. Neuroscience Research, 57, 1–9.CrossRefPubMedGoogle Scholar
- Meijering, E., Jacob, M., Sarria, J. C., Steiner, Pl, Hirling, H., & Unser, M. (2004). Design and validation of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry, 58A(2), 167–176.CrossRefGoogle Scholar
- Mel, B. W. (1994). Information-processing in dendritic trees. Neural Computation, 6, 1031–1085.CrossRefGoogle Scholar
- Miller, M. I., Roysam, B., Smith, K. R., & O'Sullivan, J. A. (1991). Representing and computing regular languages on massively parallel networks. IEEE Transactions on Neural Networks, 2(1), 56–72.CrossRefPubMedGoogle Scholar
- Pawley, J. B. (2006). Handbook of biological confocal microscopy (3rd ed.) Springer.Google Scholar
- Perona, P., & Malik, J. (1990). Scale-space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12(7), 629–639.CrossRefGoogle Scholar
- Potter, S. M. (1996). Vital imaging: two photons are better than one. Current Biology, 6(12), 1595–1598.CrossRefPubMedGoogle Scholar
- Potter, S. M. (2005). Two-photon microscopy for 4D imaging of living neurons. In R. Yuste & A. Konnerth (Eds.), Imaging in neuroscience and development: A laboratory manual (pp. 59–70). Cold Spring Harbor: Cold Spring Harbor Laboratory.Google Scholar
- Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14(5), 465–471.CrossRefGoogle Scholar
- Rodriguez, A., Ehlenberger, D. B., Hof, P. R., & Wearne, S. L. (2006). Rayburst sampling. An algorithm for automated three-dimensional shape analysis from laser scanning microscopy images. National Protocol, 1(4), 2152–2161.CrossRefGoogle Scholar
- Rodriguez, A., Ehlenberger, D., Kelliher, K., Einstein, M., Henderson, S. C., Morrison, J. H., et al. (2003). Automated reconstruction of three-dimensional neuronal morphology from laser scanning microscopy images. Methods, 30(1), 94–105.CrossRefPubMedGoogle Scholar
- Rogers, D. F. (1998). Procedural elements for computer graphics. Boston: McGraw-Hill.Google Scholar
- Rolston, J. D., Wagenaar, D. A., & Potter, S. M. (2007). Precisely timed spatiotemporal patterns of neural activity in dissociated cortical cultures. Neuroscience, 148(1), 294–303.CrossRefPubMedGoogle Scholar
- Satou, K., Aoki, Y., Mataga, N., Hensh, T. K., & Taki, K. (2005). Automatic analysis for neuron by confocal laser scanning microscope. Optomechatronic Machine Vision, Proceedings of SPIE, 6051.Google Scholar
- Schmitt, S., Evers, J. F., Duch, C., Scholz, M., & Obermayer, K. (2004). New methods for the computer-assisted 3-D reconstruction of neurons from confocal image stacks. Neuroimage, 23(4), 1283–1298.CrossRefPubMedGoogle Scholar
- Schroeder, W., Martin, K., & Lorensen, B. (1998). The visualization toolkit: An object oriented approach to 3-D graphics. Printice-Hall Inc.Google Scholar
- Schumaker, L. L. (1981). Spine functions: Basic theory. New York: Wiley.Google Scholar
- Scorcioni, R., Polavaram, S., & Ascoli, G. A. (2008). L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nature Protocols, 3(5), 866–876.Google Scholar
- Srinivasan, R., Zhou, X., Miller, E., Lu, J., Litchman, J., & Wong, S. T. (2007). Automated axon tracking of 3-D confocal laser scanning microscopy images using guided probabilistic region merging. Neuroinformatics, 5(3), 189–203.CrossRefPubMedGoogle Scholar
- Theisel, H., & Weinkauf, T. (2002). Vector field metrics based on distance measures of first order critical points. Journal of WSCG, 10(3).Google Scholar
- Trachtenberg, J. T., Chen, B. E., Knott, G. W., Feng, G., Sanes, J. R., Welker, E., et al. (2002). Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature, 420(6917), 788–794.CrossRefPubMedGoogle Scholar
- Turner, J. N., Szarowski, D. H., Smith, K. L., Marko, M., Leith, A., & Swann, J. W. (1991). Confocal microscopy and three-dimensional reconstruction of electrophysiologically identified neurons in thick brain slices. Journal of Electron Microscopy Technique, 18(1), 11–23.CrossRefPubMedGoogle Scholar
- Turner, J. N., Szarowski, D. H., Turner, T. J., Ancin, H., Lin, W. C., Roysam, B., et al. (1994). Three-dimensional imaging and image analysis of hippocampal neurons: confocal and digitally enhanced wide field microscopy. Microscopy Research and Technique, 29(4), 269–278.CrossRefPubMedGoogle Scholar
- Tyrrell, J. A., di Tomaso, E., Fuja, D., Tong, R., Kozak, K., Jain, R. K., et al. (2007). Robust 3-D modeling of vasculature imagery using superellipsoids. IEEE Transactions on Medical Imaging, 26(2), 223–237.CrossRefPubMedGoogle Scholar
- Tyrrell, J. A., Mahadevan, V., Tong, R. T., Brown, E. B., Jain, R. K., & Roysam, B. (2005). A 2-D/3-D model-based method to quantify the complexity of microvasculature imaged by in vivo multiphoton microscopy. Microvascular Research, 70(3), 165–178.CrossRefPubMedGoogle Scholar
- Vliet, L. J. V. (1993). Grey-scale measurements in multi-dimensional digitized images. Ph.D. Thesis of the Pattern Recognition Group, Delft University of Technology, The Netherlands.Google Scholar
- Wearne, S. L., Rodriguez, A., Ehlenberger, D. B., Rocher, A. B., Henderson, S. C., & Hof, P. R. (2005). New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales. Neuroscience, 136(3), 661–680.CrossRefPubMedGoogle Scholar
- Weaver, C. M., Hof, P. R., Wearne, S. L., & Lindquist, W. B. (2004). Automated algorithms for multiscale morphometry of neuronal dendrites. Neural Computation, 16(7), 1353–1383.CrossRefPubMedGoogle Scholar
- Wu, C. C., Reilly, J. F., Young, W. G., Morrison, J. H., & Bloom, F. E. (2004). High-throughput morphometric analysis of individual neurons. Cerebral Cortex, 14(5), 543–554.CrossRefPubMedGoogle Scholar
- Xiong, G., Zhou, X., Degterev, A., Ji, L., & Wong, S. T. (2006). Automated neurite labeling and analysis in fluorescence microscopy images. Cytometry A, 69(6), 494–505.PubMedGoogle Scholar
- Xu, X., & Wong, S. T. (2006). Optical microscopic image processing of dendritic spines morphology. IEEE Signal Processing Magazine, 23(4), 132–135.CrossRefGoogle Scholar
- Yu, Z., & Bajaj, C. (2004). A segmentation-free approach for skeletonization of gray-scale images via anisotropic vector diffusion. Computer Vision and Pattern Recognition, CVPR. Proceedings of the 2004 IEEE Computer Society Conference on, 1, 415–20.Google Scholar
- Yuste, R., & Bonhoeffer, T. (2001). Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annual Review of Neuroscience, 24, 1071–1089.CrossRefPubMedGoogle Scholar
- Zhang, Y., Zhou, X., Degterev, A., Lipinski, M., Adjeroh, D., Yuan, J., et al. (2007a). A novel tracing algorithm for high throughput imaging screening of neuron-based assays. Journal of Neuroscience Methods, 160(1), 149–162.CrossRefPubMedGoogle Scholar
- Zhang, Y., Zhou, X., Witt, R. M., Sabatini, B. L., Adjeroh, D., & Wong, S. T. (2007b). Automated spine detection using curvilinear structure detector and LDA Classifier. Biomedical Imaging: From Nano to Macro, ISBI. 4th IEEE International Symposium on, pp. 528–531.Google Scholar
- Zhang, Y., Zhou, X., Witt, R. M., Sabatini, B. L., Adjeroh, D., & Wong, S. T. (2007c). Dendritic spine detection using curvilinear structure detector and LDA classifier. Neuroimage, 36(2), 346–360.CrossRefPubMedGoogle Scholar