Neuroinformatics

, Volume 7, Issue 3, pp 195–210 | Cite as

NETMORPH: A Framework for the Stochastic Generation of Large Scale Neuronal Networks With Realistic Neuron Morphologies

  • Randal A. Koene
  • Betty Tijms
  • Peter van Hees
  • Frank Postma
  • Alexander de Ridder
  • Ger J. A. Ramakers
  • Jaap van Pelt
  • Arjen van Ooyen
Article

Abstract

We present a simulation framework, called NETMORPH, for the developmental generation of 3D large-scale neuronal networks with realistic neuron morphologies. In NETMORPH, neuronal morphogenesis is simulated from the perspective of the individual growth cone. For each growth cone in a growing axonal or dendritic tree, its actions of elongation, branching and turning are described in a stochastic, phenomenological manner. In this way, neurons with realistic axonal and dendritic morphologies, including neurite curvature, can be generated. Synapses are formed as neurons grow out and axonal and dendritic branches come in close proximity of each other. NETMORPH is a flexible tool that can be applied to a wide variety of research questions regarding morphology and connectivity. Research applications include studying the complex relationship between neuronal morphology and global patterns of synaptic connectivity. Possible future developments of NETMORPH are discussed.

Keywords

Neurite outgrowth Growth model Growth cone Morphogenesis Synaptic connectivity Neural networks Neural development 

References

  1. Aeschlimann, M. (2000). Biophysical models of axonal pathfinding. Ph.D. thesis, University of Lausanne.Google Scholar
  2. Ascoli, G., & Krichmar, J. (2000). L-neuron: a modeling tool for the efficient generation and parsimonious description of dendritic morphology. Neurocomputing, 32–33, 1003–1011.CrossRefGoogle Scholar
  3. Ascoli, G., Krichmar, J., Nasuto, S., & Senft, S. (2001a). Generation, description and storage of dendritic morphology data. Philosophical Transactions of the Royal Society of London B, 356, 1131–1145.CrossRefGoogle Scholar
  4. Ascoli, G., Krichmar, J., Scorcioni, R., Nasuto, S., & Senft, S. (2001b). Computer generation and quantitative morphometric analysis of virtual neurons. Anatomy and Embryology, 204, 283–301.CrossRefGoogle Scholar
  5. Bamburg, J. (2003). Introduction to cytoskeletal dynamics and pathfinding of neuronal growth cones. Journal of Histochemistry & Cytochemistry, 51(4), 407–409.Google Scholar
  6. Belmonte, M., & Bourgeron, T. (2006). Fragile x syndrome and autism at the intersection of genetic and neural networks. Nature Neuroscience, 9, 1221–1225.PubMedCrossRefGoogle Scholar
  7. Braitenberg, V., & Schütz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.Google Scholar
  8. Butz, M., Lehmann, K., Dammasch, I., & Teuchert-Noodt, G. (2006). A theoretical network model to analyse neurogenesis and synaptogenesis in the dentate gyrus. Neural Networks, 19, 1490–1505.PubMedCrossRefGoogle Scholar
  9. da Costa, L. F., Manoel, E., Faucereau, J., Chelly, J., Van Pelt, J., & Ramakers, G. (2002). A shape analysis framework for neuromorphometry. Network, 13(3), 283–310.CrossRefGoogle Scholar
  10. Dityatev, A. E., Chmykhova, N. M., Studer, L., Karamian, O. A., Kozhanov, V. M., & Clamann, H. P. (1995). Comparison of the topology and growth rules of motoneuronal dendrites. J. Comp Neurol., 363, 505–516.PubMedCrossRefGoogle Scholar
  11. Douglas, R., & Martin, K. (2004). Neuronal circuits in the neocortex. Annual Review of Neuroscience, 27, 419–451.PubMedCrossRefGoogle Scholar
  12. Eberhard, J. P., Wanner, A., & Wittum, G. (2006). NeuGen: A tool for the generation of realistic morphology of cortical neurons and neuronal networks in 3D. Neurocomputing, 70(1–3), 327–342.CrossRefGoogle Scholar
  13. Fields, R., & Itoh, K. (1996). Neural cell adhesion molecules in activity-dependent development and synaptic plasticity. Trends in Neurosciences, 19, 473–480.PubMedCrossRefGoogle Scholar
  14. Gleeson, P., Steuber, V., & Silver, R. (2007). neuroConstruct: a tool for modeling networks of neurons in 3D space. Neuron, 54, 219–235.PubMedCrossRefGoogle Scholar
  15. Goldberg, D., & Burmeister, D. (1989). Looking into growth cones. Trends in Neurosciences, 12(12), 503–506.PubMedCrossRefGoogle Scholar
  16. Goodhill, J. G. (1998). Mathematical guidance for axons. Trends in Neurosciences, 21, 226–231.PubMedCrossRefGoogle Scholar
  17. Gordon-Weeks, P. R. (2000). Neuronal Growth Cones. Cambridge, United Kingdom: Cambridge University Press.Google Scholar
  18. Graham, B., & Van Ooyen, A. (2004). Transport limited effects in a model of dendritic branching. Journal of Theoretical Biology, 230, 421–432.PubMedCrossRefGoogle Scholar
  19. Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biol. Cybern., 82, 111–121.PubMedCrossRefGoogle Scholar
  20. Hely, T., Graham, B., & Van Ooyen, A. (2001). A computational model of dendrite elongation and branching based on map2 phosphorylation. Journal of Theoretical Biology, 210, 375–384.PubMedCrossRefGoogle Scholar
  21. Hentschel, H. G. E., & Van Ooyen, A. (1999). Models of axon guidance and bundling during development. Proceedings of the Royal Society of London Series B, 266, 2231–2238.PubMedCrossRefGoogle Scholar
  22. Hillman, D. (1979). Neuronal shape parameters and substructures as a basis of neuronal form. In F. Schmitt (Ed.), The neurosciences, 4th study program (pp. 477–498). Cambridge: MIT.Google Scholar
  23. Hillman, D. E. (1988). Parameters of dendritic shape and substructure: intrinsic and extrinsic determination? In R. Lasek & M. Black (Eds.), Intrinsic determinants of neuronal form and function (pp. 83–113). New York: Alan R. Liss, Inc.Google Scholar
  24. Hines, M., & Carnevale, N. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRefGoogle Scholar
  25. Hines, M., & Moore, J. (1993). A NEURON simulation program. In 23 rd Annual Meeting of the Society for Neuroscience.Google Scholar
  26. Isbister, C., & O’Connor, T. (1999). Filopodial adhesion does not predict growth cone steering events in vivo. Journal of Neuroscience, 20, 2589–2600.Google Scholar
  27. Jan, Y.-N., & Jan, L.-Y. (2003). The control of dendrite development. Neuron, 40, 229–242.PubMedCrossRefGoogle Scholar
  28. Kaiser, M., & Hilgetag, C. (2007). Development of multi-cluster cortical networks by time windows for spatial growth. Neurocomputing, 70, 1829–1832.CrossRefGoogle Scholar
  29. Kater, S. B. & Guthrie, P. B. (1990). Neuronal growth cone as an integrator of complex environmental information. In: Cold Spring Harbor Symposia on Quantitative Biology, vol. LV, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press, 35.Google Scholar
  30. Kiddie, G., McLean, D., van Ooyen, A., & Graham, B. (2005). Biologically plausible models of neurite outgrowth. In J. van Pelt, M. Kamermans, C. Levelt, A. van Ooyen, G. Ramakers, and P. Roelfsema, (Eds.), Development, dynamics and pathology of neuronal networks: from molecules to functional circuits, Progress in Brain Research, 147, 67–80. Elsevier.Google Scholar
  31. Koene, R., Postma, F., de Ridder, S., Hoedemaker, S., van Pelt, J., & van Ooyen A. (2009) NETMORPH Manual. http://www.neurodynamics.nl/.
  32. Konur, S., & Ghosh, A. (2005). Calcium signaling and the control of dendritic development. Neuron, 46, 401–405.PubMedCrossRefGoogle Scholar
  33. Kowalski, R. J., & Williams, R. J. (1993). Microtubule-associated protein 2 alters the dynamic properties of microtubule assembly and disassembly. Journal Biological Chemistry, 268, 9847–9855.Google Scholar
  34. Lamoureux, P., Buxbaum, R. E., & Heidemann, S. R. (1998). Axonal outgrowth of cultured neurons is not limited by growth cone competition. Journal of Cell Science, 111, 3245–3252.PubMedGoogle Scholar
  35. Larkman, A. U. (1991). Dendritic morphology of pyramidal neurons of the visual cortex of the rat I. Branching patterns. Journal of Comparative Neurology, 306, 307–319.PubMedCrossRefGoogle Scholar
  36. Larkman, A. U., Major, G., Stratford, K. J., & Jack, J. J. B. (1992). Dendritic morphology of pyramidal neurones of the visual cortex of the rat. IV: Electrical geometry. Journal of Comparative Neurology, 323, 137–152.PubMedCrossRefGoogle Scholar
  37. Le Bé, J.-V., Silberberg, G., Wang, Y., & Markram, H. (2007). Morphological, electrophysiological, and synaptic properties of corticocallosal pyramidal cells in the neonatal rat neocortex. Cerebral Cortex, 17, 2204–2213.PubMedCrossRefGoogle Scholar
  38. Letourneau, P., Kater, S., & Macagno, E. (eds). (1991). The Nerve Growth Cone. New York: Raven.Google Scholar
  39. Luczak, A. (2006). Spatial embedding of neuronal trees modeled by diffusive growth. Journal of Neuroscience Methods, 157, 132–141.PubMedCrossRefGoogle Scholar
  40. Maskery, S. M., Buettner, H. M., & Shinbrot, T. (2004). Growth Cone Pathfinding: a competition between deterministic and stochastic events. BMC Neuroscience, 5, 22.PubMedCrossRefGoogle Scholar
  41. Nowakowski, R. S., Hayes, N. L., & Egger, M. D. (1992). Competitive interactions during dendritic growth: a simple stochastic growth algorithm. Brain Research, 576, 152.PubMedCrossRefGoogle Scholar
  42. Peters, A. (1979). Thalamic input to the cerebral cortex. Trends in Neurosciences, 2, 1183–1185.CrossRefGoogle Scholar
  43. Polinsky, M., Balzovich, K., & Tosney, K. (2000). Identification of an invariant response: Stable contact with schwann cells induces veil extension in sensory growth cones. Journal of Neuroscience, 20, 1044–1055.PubMedGoogle Scholar
  44. Rall, W. (1959). Branching dendritic trees and motoneuron membrane resistivity. Experimental Neurology, 1, 491–527.PubMedCrossRefGoogle Scholar
  45. Ramakers, G. J. A., Winter, J., Hoogland, T., Lequin, M. B., Van Pelt, J., & Pool, C. W. (1998). Depolarization stimulates lamellipodia formation and axonal but not dendritic branching in cultured rat cerebral cortex neurons. Development Brain Research, 108, 205–216.CrossRefGoogle Scholar
  46. Samsonovich, A., & Ascoli, G. (2007). Computational models of dendritic morphology: From parsimonious description to biological insight. In M. Laubichler & G. Müller (Eds.), Modeling Biology, Structures, Behaviors, Evolution (pp. 91–113). Cambridge, Massachusetts: MIT.Google Scholar
  47. Sánchez, C. J., Díaz-Nido, J., & Avila, J. (2000). Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Progress in Neurobiology, 61, 133–168.PubMedCrossRefGoogle Scholar
  48. Scheff, S. W., Prince, D. A., Schmitt, F. A., DeKosky, S. T., & Mufson, E. F. (2007). Synaptic alterations in CA1 mild Alzheimer’s disease and mild cognitive impairment. Neurology, 68, 1501–1508.PubMedCrossRefGoogle Scholar
  49. Schierwagen, A., & Grantyn, R. (1986). Quantitative morphological analysis of deep superior colliculus neurons stained intracellularly with HRP in the cat. J Hirnforsch, 27, 611–623.PubMedGoogle Scholar
  50. Schubert, D., Kötter, R., Luhmann, H. J., & Staiger, J. F. (2006). Morphology, electrophysiology and functional input connectivity of pyramidal neurons characterizes a genuine layer Va in the primary somatosensory cortex. Cereb Cortex, 16(2), 223–36.PubMedCrossRefGoogle Scholar
  51. Segev, R., & Ben-Jacob, E. (2000). Generic modeling of chemotactic based self-wiring of neural networks. Neural Networks, 13(2), 185–199.PubMedCrossRefGoogle Scholar
  52. Senft, S., & Ascoli, G. (1999). Reconstruction of brain networks by algorithmic amplification of morphometry data. Lecture Notes in Computer Science, 1606, 25–33.CrossRefGoogle Scholar
  53. Shepherd, G. M., & Svoboda, K. (2005). Laminar and columnar organization of ascending excitatory projections to layer 2/3 pyramidal neurons in rat barrel cortex. Journal of Neuroscience, 25(24), 5670–5679.PubMedCrossRefGoogle Scholar
  54. Sporns, O., Chialvo, D., Kaiser, M., & Hilgetag, C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.PubMedCrossRefGoogle Scholar
  55. Stepanyants, A., & Chklovskii, D. (2005). Neurogeometry and potential synaptic connectivity. Trends in Neurosciences, 28(7), 387–394.PubMedCrossRefGoogle Scholar
  56. Stepanyants, A., Tamas, G., & Chklovskii, D. B. (2004). Class-specific features of neuronal wiring. Neuron, 43, 251–259.PubMedCrossRefGoogle Scholar
  57. Uylings, H., & Smit, G. (1975). Three dimensional branching structure of pyramidal cell dendrites. Brain Research, 87, 55–60.PubMedCrossRefGoogle Scholar
  58. Uylings, H. B. M., & van Pelt, J. (2002). Measures for quantifying dendritic arborizations. Network: Computation Neural System, 13, 397–414.CrossRefGoogle Scholar
  59. Uylings, H. B. M., Kuypers, K. & Veltman, W. A. M. (1978). Environmental influences on the neocortex in later life. In M. A. Corner (Ed.) Maturation of the nervous system. Progress in Brain Research, Vol 48, pp. 261–273. Elsevier, Amsterdam.Google Scholar
  60. Uylings, H. B. M., Van Pelt, J., Parnavelas, J. G., & Ruiz-Marcos, A. (1994). Geometrical and topological characteristics in the dendritic development of cortical pyramidal and nonpyramidal neurons. In J. van Pelt, M. A. Corner, H. B. M. Uylings & F. H. Lopes da Silva (Eds.), Progress in Brain Research, Vol. 102, the self-organizing brain: from growth cones to functional networks (pp. 109–123). Amsterdam: Elsevier.CrossRefGoogle Scholar
  61. Van Ooyen, A., & Van Pelt, J. (1994). Activity-dependent outgrowth of neurons and overshoot phenomena in developing neural networks. Journal of Theoretical Biology, 167, 27–43.CrossRefGoogle Scholar
  62. Van Ooyen, A., & Van Pelt, J. (1996). Complex periodic behavior in a neural network model with activity-dependent neurite outgrowth. Journal of Theoretical Biology, 179, 229–242.PubMedCrossRefGoogle Scholar
  63. Van Ooyen, A., Van Pelt, J., & Corner, M. (1995). Implications of activity dependent neurite outgrowth for neuronal morphology and network development. Journal of Theoretical Biology, 172, 63–82.PubMedCrossRefGoogle Scholar
  64. Van Ooyen, A., Pakdaman, K., Houweling, A., Van Pelt, J., & Vibert, J.-F. (1996). Networks connectivity changes through activity-dependent neurite outgrowth. Neural Processing Letters, 3, 123–130.CrossRefGoogle Scholar
  65. Van Ooyen, A., Graham, B., & Ramakers, G. (2001). Competition for tubulin between growing neurites during development. Neurocomputing, 38–40, 73–78.CrossRefGoogle Scholar
  66. Van Pelt, J., & Uylings, H. (1999). Modeling the natural variability in the shape of dendritic trees: Application to basal dendrites of small rat cortical layer 5 pyramidal neurons. Neurocomputing, 26–27, 305–311.Google Scholar
  67. Van Pelt, J., & Uylings, H. (2002). Branching rates and growth functions in the outgrowth of dendritic branching patterns. Network: Computational Neural Systems, 13, 261–281.CrossRefGoogle Scholar
  68. Van Pelt, J., & Uylings, H. (2003). Growth functions in dendritic outgrowth. Brain and Mind, 4:51–65. In A. van Ooyen, (Ed.), Modeling Neural Development, 75–94. Cambridge, MA: MIT Press.Google Scholar
  69. Van Pelt, J., & Uylings, H. B. M. (2005). Natural variability in the geometry of dendritic branching patterns. In: G. N. Reeke, R. R. Poznanski, K. A. Lindsay, J. R. Rosenberg, & O. Sporns (Eds.), Modeling in the Neurosciences: From Biological Systems to Neuromimetic Robotics. CRC Press, 2005, pp. 89–115.Google Scholar
  70. Van Pelt J. and Uylings H.B.M. (2007) Modeling neuronal growth and shape. In Modeling Biology—Structures, Behaviors, Evolution, Manfred D. Laubichler and Gerd B. Müller (Eds). The MIT Press, 2007, Cambridge, pp. 195–215.Google Scholar
  71. Van Pelt, J., Uylings, H. B. M., Verwer, R. W. H., Pentney, R. J., & Woldenberg, M. J. (1992). Tree asymmetry—a sensitive and practical measure for binary topological trees. Bulletin of Mathematical Biology, 54, 759–784.PubMedCrossRefGoogle Scholar
  72. Van Pelt, J., Dityatev, A. E., & Uylings, H. B. M. (1997). Natural variability in the number of dendritic segments: Model-based inferences about branching during neurite outgrowth. Journal of Comparative Neurology, 387, 325–340.PubMedCrossRefGoogle Scholar
  73. Van Pelt, J., Van Ooyen, A., & Uylings, H. B. M. (2001a). Modeling dendritic geometry and the development of nerve connections. In: De Schutter E (Ed.), Cannon RC (CD-ROM) Computational Neuroscience: Realistic modeling for experimentalist, Chapter 7, CRC Press. pp 179–208.Google Scholar
  74. Van Pelt, J., Van Ooyen, A., & Uylings, H. (2001b). The need for integrating neuronal morphology databases and computational environments in exploring neuronal structure and function. Anatomy and Embryology, 204, 255–265.CrossRefGoogle Scholar
  75. Van Pelt, J., Schierwagen, A., & Uylings, H. B. M. (2001c). Modeling dendritic morphological complexity of deep layer cat superior colliculus neurons. Neurocomputing, 38–40, 403–408.CrossRefGoogle Scholar
  76. Van Pelt, J., Graham, B., & Uylings, H. (2003). Formation of dendritic branching patterns. In A. van Ooyen (Ed.), Modeling neural development (pp. 75–94). Cambridge, Massachusets: The MIT.Google Scholar
  77. Van Veen, M. P., & Van Pelt, J. (1993). Terminal and intermediate segment lengths in neuronal trees with finite length. Bulletin of Mathematical Biology, 55, 277–294.PubMedCrossRefGoogle Scholar
  78. Wang, Y., Gupta, A., Toledo-Rodriguez, M., Wu, C. Z., & Markram, H. (2002). Anatomical, physiological, molecular and circuit properties of nest basket cells in the developing somatosensory cortex. Cerebral Cortex, 12(4), 395–410.PubMedCrossRefGoogle Scholar
  79. Zubler, F., & Douglas, R. (2008) CX3D: a java package for simulation of cortical development in 3D. Frontiers in Neuroinformatics. Conference Abstract: Neuroinformatics 2008. doi:10.3389/conf.neuro.11.2008.01.127.

Copyright information

© Humana Press Inc. 2009

Authors and Affiliations

  • Randal A. Koene
    • 1
  • Betty Tijms
    • 1
  • Peter van Hees
    • 1
  • Frank Postma
    • 1
  • Alexander de Ridder
    • 1
  • Ger J. A. Ramakers
    • 2
  • Jaap van Pelt
    • 1
  • Arjen van Ooyen
    • 1
  1. 1.Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive ResearchVU University AmsterdamAmsterdamthe Netherlands
  2. 2.Netherlands Institute for NeuroscienceAmsterdamthe Netherlands

Personalised recommendations