, 6:135

Automatic Localization of Anatomical Point Landmarks for Brain Image Processing Algorithms

Original Paper


Many brain image processing algorithms require one or more well-chosen seed points because they need to be initialized close to an optimal solution. Anatomical point landmarks are useful for constructing initial conditions for these algorithms because they tend to be highly-visible and predictably-located points in brain image scans. We introduce an empirical training procedure that locates user-selected anatomical point landmarks within well-defined precisions using image data with different resolutions and MRI weightings. Our approach makes no assumptions on the structural or intensity characteristics of the images and produces results that have no tunable run-time parameters. We demonstrate the procedure using a Java GUI application (LONI ICE) to determine the MRI weighting of brain scans and to locate features in T1-weighted and T2-weighted scans.


Anatomical point landmark Automation Singular value decomposition Least-squares Neural network Multi-resolution Seed points 


  1. Alker, M., Frantz, S., et al. (2001). Improving the robustness in extracting 3D point landmarks based on deformable models. In Proceedings of the 23rd DAGM-Symposium on pattern recognition (Vol. 2191, pp. 108–115).Google Scholar
  2. Arun, K. S., Huang, T. S., et al. (1987). Least square fitting of two 3D point sets. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987(9), 698–700.Google Scholar
  3. Barrett, W. A., & Mortensen, E. N. (1997). Interactive live-wire boundary extraction. Medical Image Analysis, 1(4), 331–341.PubMedCrossRefGoogle Scholar
  4. Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(2), 239–256.CrossRefGoogle Scholar
  5. Boykov, Y., & Jolly, M. (2001). Interactive graph cuts for optimal boundary and region segmentation of objects in N–D images. International Conference on Computer Vision, I, 105–112.Google Scholar
  6. Bischoff-Grethe, A., Fischl, B., et al. (2004). A technique for the deidentification of structural brain MR images. Budapest, Hungary: Human Brain Mapping.Google Scholar
  7. Chandra, D. V. S. (2002). Digital image watermarking using singular value decomposition. In Proc. 45th IEEE Midwest symp. on circuits and systems (Vol. 3, pp. 264–267).Google Scholar
  8. Chen, P. C., & Pavlidis, T. (1983). Segmentation by textures using correlation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 5(1), 64–69.Google Scholar
  9. Cox, I. J., Rao, S. B., et al. (1996). Ratio regions: A technique for image segmentation. Proc. International Conference on Pattern Recognition, 2, 557–564.CrossRefGoogle Scholar
  10. Daneels, D., Van Campenhout, D., et al. (1993). Interactive Outlining: An improved approach using active contours. SPIE Proceedings of Storage and Retrieval for Image and Video Databases, 1908, 226–233.Google Scholar
  11. Davis, L. S., Johns, S. A., et al. (1979). Texture analysis using generalized cooccurrence matrices. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1, 251–259.Google Scholar
  12. Ende, G., Treuer, H., et al. (1992). Optimization and evaluation of landmark-based image correlation. Physics in Medicine & Biology, 37(1), 261–271.CrossRefGoogle Scholar
  13. Falco, A. X., Udupa, J. K., et al. (1998). User-steered image segmentation paradigms: Live wire and live lane. Graphical Models and Image Processing, 60(4), 233–260.CrossRefGoogle Scholar
  14. Fang, S., Raghavan, R., et al. (1996). Volume morphing methods for landmark based 3D image deformation. SPIE International Symposium on Medical Imaging, 2710, 404–415.Google Scholar
  15. Fischl, B., Salat, D. H., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.PubMedCrossRefGoogle Scholar
  16. Fitzpatrick, J. M., & Reinhardt, J. M. (2005). Automatic landmarking of magnetic resonance brain images. Proceedings SPIE, 1329, 1329–1340.Google Scholar
  17. Frantz, S., Rohr, K., et al. (2000). Localization of 3d anatomical point landmarks in 3d tomographic images using deformable models. Proceedings on MICCAI, 2000, 492–501.Google Scholar
  18. Gorodetski, V. I., Popyack, L. J., et al. (2001). SVD-based approach to transparent embedding data into digital images. Proceedings on International Workshop on Mathematical Methods, Models and Architectures for Computer Network Security, 2052, 263–274.Google Scholar
  19. Han, Y., & Park, H. (2004). Automatic registration of brain magnetic resonance images based on talairach reference system. Journal of Magnetic Resonance Imaging 20(4), 572-80.PubMedCrossRefGoogle Scholar
  20. Hansen, P. C., & Jensen, S. H. (1998). FIR filter representation of reduced-rank noise reduction. IEEE Transactions on Signal Proceedings, 46(6), 1737–1741.CrossRefGoogle Scholar
  21. Hartkens, T., Rohr, K., et al. (2002). Evaluation of 3D operators for the detection of anatomical point landmarks in MR and CT Images. Computer Vision and Image Understanding, 86(2), 118–136.CrossRefGoogle Scholar
  22. Hill, D. L., Hawkes, D. J., et al. (1991). Registration of MR and CT images for skull base surgery using point-like anatomical features. British Journal of Radiology, 64(767), 1030–1035.PubMedGoogle Scholar
  23. Huang, T., & Narendra, P. (1974). Image restoration by singular value decomposition. Applied Optics, 14(9), 2213–2216.Google Scholar
  24. Kalman, D. (1996). A singularly valuable decomposition: The SVD of a matrix. The College Mathematics Journal, 27(1), 2–23.CrossRefGoogle Scholar
  25. Kass, M., Witkin, A., et al. (1987). Snakes: Active contour models. International Journal of Computer Vision, 1(4), 321–331.CrossRefGoogle Scholar
  26. Konstantinides, K., & Yovanof, G. S. (1995). Application of SVD-based spatial filtering to video sequences. IEEE International Conference on Acoustics, 4, 2193–2196.Google Scholar
  27. Konstantinides, K., Natarajan, B., et al. (1997). Noise estimation and filtering using block-based singular value decomposition. IEEE Transactions on Image Process, 6(3), 479–483.CrossRefGoogle Scholar
  28. Le Briquer, L., Lachmann, F., et al. (1993). Using local extremum curvatures to extract anatomical landmarks from medical images. Proceedings on SPIE, 1898, 549–558.CrossRefGoogle Scholar
  29. MacDonald, D., Avis, D., & Evan, A. C. (1994). Multiple surface identification and matching in magnetic resonance imaging. Proceedings of the Society of Photo-optical Instrumentation Engineers, 2359, 160–169.Google Scholar
  30. McInerney, T., & Dehmeshki, H. (2003). User-defined b-spline template-snakes. Medical Image Computing and Computer-Assisted Intervention, 2879, 746–753.Google Scholar
  31. Meyer, F., & Beucher, S. (1990). Morphological segmentation. Journal of Visual Communications and Image Representation, 1(1), 21–46.CrossRefGoogle Scholar
  32. Mortensen, E. N., & Barrett, W. A. (1995). Intelligent scissors for image composition. In Proceedings of the ACM SIGGRAPH ‘95: Computer graphics and interactive techniques, (Vol. 191–198).Google Scholar
  33. O’Leary, D. P., & Peleg, S. (1983). Digital image compression by outer product expansion. IEEE Transactions on Communications, 31(3), 441–444.CrossRefGoogle Scholar
  34. Pennec, X., Ayache, N., et al. (2000). Landmark-based registration using features identified through differential geometry. In Handbook of medical imaging (1st edn.). San Diego, CA: Academic.Google Scholar
  35. Peters, T. M., Davey, B. L. K., et al. (1996). Three-dimensional multi-modal image-guidance for neurosurgery. IEEE Transactions on Medical Imaging, 15(2), 121–128.PubMedCrossRefGoogle Scholar
  36. Pohl, K. M., Wells, W. M., et al. (2002). Incorporating non-rigid registration into expectation maximization algorithm to segment MR Images. In Fifth international conference on medical image computing and computer assisted intervention. Tokyo, Japan.Google Scholar
  37. Press, W. H., Teukolsky, S. A., Vetterling, W. T., & Flannery, B. P. (1995). Numerical recipies in C: The art of scientific computing (2nd edn.). Cambridge, UK: Cambridge University Press.Google Scholar
  38. Rohr, K. (1997). On 3d differential operators for detecting point landmarks. Image and Vision Computing, 15(3), 219–233.CrossRefGoogle Scholar
  39. Rohr, K. (2001). Landmark-based image analysis using geometric and intensity models (1st edn.). Dordrecht, The Netherlands: Kluwer.Google Scholar
  40. Russ, J. C. (2006). The image processing handbook (5th edn.). Boca Raton, FL: CRC Press.Google Scholar
  41. Sethian, J. A. (1999). Level set methods and fast marching methods (2nd edn.). Cambridge, UK: Cambridge University Press.Google Scholar
  42. Shattuck, D. W., Rex, D. E., et al. (2003). JohnDoe: Anonymizing MRI data for the protection of research subject confidentiality. In 9th annual meeting of the organization for human brain mapping. New York, New York.Google Scholar
  43. Sirovich, L., & Kirby, M. (1987). Low dimensional procedure for the characterization of human faces. Journal of the Optical Society of America A, 4(3), 519–524.CrossRefGoogle Scholar
  44. Strasters, K. C., Little, J. A., et al. (1997). Anatomic landmark image registration: Validation and comparison. CVR Med/MRCAS, 1997, 161–170.CrossRefGoogle Scholar
  45. Thirion, J. (1994). Extremal points: Definition and application to 3D image registration. Proceedings of the Conference on Computer Vision and Pattern Recognition, 1994, 587–592.CrossRefGoogle Scholar
  46. Toga, A. W. (1999). Brain warping (1st edn.). San Diego, CA: Academic.Google Scholar
  47. Turk, M. A., & Pentland, A. P. (1991). Eigenfaces for recognition. Journal of Cognitive Neuroscience, 3(1), 71–86.CrossRefGoogle Scholar
  48. Woods, R. P., Grafton, S. T., et al. (1998). Automated image registration: I. General methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22(1), 139–152.PubMedCrossRefGoogle Scholar
  49. Wörz, S., Rohr., K., et al. (2003). 3D parametric intensity models for the localization of different types of 3D anatomical point landmarks in tomographic images. DAGM-Symposium, 2003, 220–227.Google Scholar
  50. Yushkevich, P. A., Piven, J., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage, 31(3), 1116–1128.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press 2008

Authors and Affiliations

  1. 1.Department of Neurology, UCLA Laboratory of Neuro ImagingDavid Geffen School of MedicineLos AngelesUSA

Personalised recommendations