Neuroinformatics

, Volume 5, Issue 3, pp 161–175

Sharing and Reusing Gene Expression Profiling Data in Neuroscience

Article

Abstract

As public availability of gene expression profiling data increases, it is natural to ask how these data can be used by neuroscientists. Here we review the public availability of high-throughput expression data in neuroscience and how it has been reused, and tools that have been developed to facilitate reuse. There is increasing interest in making expression data reuse a routine part of the neuroscience tool-kit, but there are a number of challenges. Data must become more readily available in public databases; efforts to encourage investigators to make data available are important, as is education on the benefits of public data release. Once released, data must be better-annotated. Techniques and tools for data reuse are also in need of improvement. Integration of expression profiling data with neuroscience-specific resources such as anatomical atlases will further increase the value of expression data.

Keywords

Microarray Gene expression analysis Meta-analysis 

References

  1. Aarnio, V., Paananen, J., & Wong, G. (2005). Analysis of microarray studies performed in the neurosciences. Journal of Molecular Neuroscience, 27, 261–268.PubMedCrossRefGoogle Scholar
  2. Assou, S., Le Carrour, T., Tondeur, S., Strom, S., Gabelle, A., Marty, S., et al. (2007). A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells (Dayton, OH), 25, 961–973.CrossRefGoogle Scholar
  3. Barnes, M., Freudenberg, J., Thompson, S., Aronow, B., & Pavlidis, P. (2005). Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms. Nucleic Acids Research, 33, 5914–5923.PubMedCrossRefGoogle Scholar
  4. Barrett, T., Troup, D. B., Wilhite, S. E., Ledoux, P., Rudnev, D., Evangelista, C., et al. (2007). NCBI GEO: Mining tens of millions of expression profiles-database and tools update. Nucleic Acids Research, 35, D760–D765.PubMedCrossRefGoogle Scholar
  5. Berman, H., Henrick, K., Nakamura, H., & Markley, J. L. (2007). The worldwide Protein Data Bank (wwPDB): Ensuring a single, uniform archive of PDB data. Nucleic Acids Research, 35, D301–D303.PubMedCrossRefGoogle Scholar
  6. Bota, M., Dong, H. W., & Swanson, L. W. (2005). Brain architecture management system. Neuroinformatics, 3, 15–48.PubMedCrossRefGoogle Scholar
  7. Bowden, D. M., & Dubach, M. F. (2003). NeuroNames 2002. Neuroinformatics, 1, 43–59.PubMedCrossRefGoogle Scholar
  8. Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., et al. (2001). Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nature Genetics, 29, 365–371.PubMedCrossRefGoogle Scholar
  9. Breitling, R., Armengaud, P., Amtmann, A., & Herzyk, P. (2004). Rank products: A simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Letters, 573, 83–92.PubMedCrossRefGoogle Scholar
  10. Brown, P. O., Eisen, M. B., & Varmus, H. E. (2003). Why PLoS became a publisher. PLoS Biology, 1, E36.PubMedCrossRefGoogle Scholar
  11. Chesler, E. J., Lu, L., Shou, S., Qu, Y., Gu, J., Wang, J., et al. (2005). Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function. Nature Genetics, 37, 233–242.PubMedCrossRefGoogle Scholar
  12. Chin, M. H., Geng, A. B., Khan, A. H., Qian, W. J., Petyuk, V. A., Boline, J., et al. (2007). A genome-scale map of expression for a mouse brain section obtained using voxelation. Physiological Genomics (in press).Google Scholar
  13. Choi, J. K., Yu, U., Kim, S., & Yoo, O. J. (2003). Combining multiple microarray studies and modeling interstudy variation. Bioinformatics (Oxford, England), 19(Suppl 1), i84–i90.CrossRefGoogle Scholar
  14. Cooper, H., & Hedges, L. V. (1994). Handbook of research synthesis. New York: Russell Sage Foundation.Google Scholar
  15. Crasto, C. J., Marenco, L. N., Liu, N., Morse, T. M., Cheung, K. H., Lai, P. C., et al. (2007). SenseLab: New developments in disseminating neuroscience information. Briefings in Bioinformatics, 8, 150–162.PubMedCrossRefGoogle Scholar
  16. Eckersley, P., Egan, G. F., Amari, S., Beltrame, F., Bennett, R., Bjaalie, J. G., et al. (2003). Neuroscience data and tool sharing: A legal and policy framework for neuroinformatics. Neuroinformatics, 1, 149–165.PubMedCrossRefGoogle Scholar
  17. Edgar, R., Domrachev, M., & Lash, A. E. (2002). Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Research, 30, 207–210.PubMedCrossRefGoogle Scholar
  18. Eisen, M. B., Spellman, P. T., Brown, P. O., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863–14868.PubMedCrossRefGoogle Scholar
  19. Eisenstein, M. (2006). Microarrays: Quality control. Nature, 442, 1067–1070.PubMedCrossRefGoogle Scholar
  20. Enard, W., Khaitovich, P., Klose, J., Zollner, S., Heissig, F., Giavalisco, P., et al. (2002). Intra- and interspecific variation in primate gene expression patterns. Science (New York, NY), 296, 340–343.Google Scholar
  21. Erraji-Benchekroun, L., Underwood, M. D., Arango, V., Galfalvy, H., Pavlidis, P., Smyrniotopoulos, P., et al. (2005). Molecular aging in human prefrontal cortex is selective and continuous throughout adult life. Biological Psychiatry, 57, 549–558.PubMedCrossRefGoogle Scholar
  22. Galbraith, D. W. (2006). The daunting process of MIAME. Nature, 444, 31.PubMedCrossRefGoogle Scholar
  23. Ge, X., Yamamoto, S., Tsutsumi, S., Midorikawa, Y., Ihara, S., Wang, S. M., et al. (2005). Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues. Genomics, 86, 127–141.PubMedCrossRefGoogle Scholar
  24. Gentleman, R. C., Carey, V. J., Bates, D. M., Bolstad, B., Dettling, M., Dudoit, S., et al. (2004). Bioconductor: Open software development for computational biology and bioinformatics. Genome Biology, 5, R80.PubMedCrossRefGoogle Scholar
  25. Glorioso, C., Sabatini, M., Unger, T., Hashimoto, T., Monteggia, L. M., Lewis, D.A., et al. (2006). Specificity and timing of neocortical transcriptome changes in response to BDNF gene ablation during embryogenesis or adulthood. Molecular Psychiatry, 11, 633–648.PubMedCrossRefGoogle Scholar
  26. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J. P., et al. (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science (New York, NY), 286, 531–537.Google Scholar
  27. Gong, S., Zheng, C., Doughty, M. L., Losos, K., Didkovsky, N., Schambra, U. B., et al. (2003). A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature, 425, 917–925.PubMedCrossRefGoogle Scholar
  28. Gu, J., & Gu, X. (2003). Induced gene expression in human brain after the split from chimpanzee. Trends Genetics, 19, 63–65.CrossRefGoogle Scholar
  29. Gu, J., & Gu, X. (2004). Further statistical analysis for genome-wide expression evolution in primate brain/liver/fibroblast tissues. Human Genomics, 1, 247–254.PubMedGoogle Scholar
  30. Hakak, Y., Walker, J. R., Li, C., Wong, W. H., Davis, K. L., Buxbaum, J. D., et al. (2001). Genome-wide expression analysis reveals dysregulation of myelination-related genes in chronic schizophrenia. Proceedings of the National Academy of Sciences of the United States of America, 98, 4746–4751.PubMedCrossRefGoogle Scholar
  31. Hsieh, W. P., Chu, T. M., Wolfinger, R. D., & Gibson, G. (2003). Mixed-model reanalysis of primate data suggests tissue and species biases in oligonucleotide-based gene expression profiles. Genetics, 165, 747–757.PubMedGoogle Scholar
  32. Hunter, J. E., & Schmidt, F. L. (1990). Methods of meta-analysis. London: Sage.Google Scholar
  33. Iwamoto, K., Bundo, M., Washizuka, S., Kakiuchi, C., & Kato, T. (2004a). Expression of HSPF1 and LIM in the lymphoblastoid cells derived from patients with bipolar disorder and schizophrenia. Journal of Human Genetics, 49, 227–231.PubMedCrossRefGoogle Scholar
  34. Iwamoto, K., Kakiuchi, C., Bundo, M., Ikeda, K., & Kato, T. (2004b). Molecular characterization of bipolar disorder by comparing gene expression profiles of postmortem brains of major mental disorders. Molecular Psychiatry, 9, 406–416.PubMedCrossRefGoogle Scholar
  35. Jurata, L. W., Bukhman, Y. V., Charles, V., Capriglione, F., Bullard, J., Lemire, A. L., et al. (2004). Comparison of microarray-based mRNA profiling technologies for identification of psychiatric disease and drug signatures. Journal of Neuroscience Methods, 138, 173–188.PubMedCrossRefGoogle Scholar
  36. Kapushesky, M., Kemmeren, P., Culhane, A. C., Durinck, S., Ihmels, J., Korner, C., et al. (2004). Expression Profiler: Next generation—an online platform for analysis of microarray data. Nucleic Acids Research, 32, W465–W470.PubMedCrossRefGoogle Scholar
  37. Koslow, S. H. (2000). Should the neuroscience community make a paradigm shift to sharing primary data? Nature Neuroscience, 3, 863–865.PubMedCrossRefGoogle Scholar
  38. Koslow, S. H. (2005). Discovery and integrative neuroscience. Clinical EEG Neuroscience, 36, 55–63.Google Scholar
  39. Larsson, O., Wennmalm, K., & Sandberg, R. (2006). Comparative microarray analysis. Omics, 10, 381–397.PubMedCrossRefGoogle Scholar
  40. Lee, H. K., Hsu, A.K., Sajdak, J., Qin, J., & Pavlidis, P. (2004). Coexpression analysis of human genes across many microarray data sets. Genome Research, 14, 1085–1094.PubMedCrossRefGoogle Scholar
  41. Lein, E. S., Hawrylycz, M. J., Ao, N., Ayres, M., Bensinger, A., Bernard, A., et al. (2007). Genome-wide atlas of gene expression in the adult mouse brain. Nature, 445, 168–176.PubMedCrossRefGoogle Scholar
  42. Lein, E. S., Zhao, X., & Gage, F. H. (2004). Defining a molecular atlas of the hippocampus using DNA microarrays and high-throughput in situ hybridization. Journal of Neuroscience, 24, 3879–3889.PubMedCrossRefGoogle Scholar
  43. Li, H., Lu, L., Manly, K. F., Chesler, E. J., Bao, L., Wang, J., et al. (2005). Inferring gene transcriptional modulatory relations: A genetical genomics approach. Human Molecular Genetics, 14, 1119–1125.PubMedCrossRefGoogle Scholar
  44. Magdaleno, S., Jensen, P., Brumwell, C. L., Seal, A., Lehman, K., Asbury, A., et al. (2006). BGEM: An in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biology, 4, e86.PubMedCrossRefGoogle Scholar
  45. McCarroll, S. A., Murphy, C. T., Zou, S., Pletcher, S. D., Chin, C. S., Jan, Y. N., et al. (2004). Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nature Genetics, 36, 197–204.PubMedCrossRefGoogle Scholar
  46. Mirnics, K., & Pevsner, J. (2004). Progress in the use of microarray technology to study the neurobiology of disease. Nature Neuroscience, 7, 434–439.PubMedCrossRefGoogle Scholar
  47. Moreau, Y., Aerts, S., De Moor, B., De Strooper, B., & Dabrowski, M. (2003). Comparison and meta-analysis of microarray data: From the bench to the computer desk. Trends in Genetics, 19, 570–577.PubMedCrossRefGoogle Scholar
  48. Mulligan, M. K., Ponomarev, I., Hitzemann, R. J., Belknap, J. K., Tabakoff, B., Harris, R. A., et al. (2006). Toward understanding the genetics of alcohol drinking through transcriptome meta-analysis. Proceedings of the National Academy of Sciences of the United States of America, 103, 6368–6373.PubMedCrossRefGoogle Scholar
  49. Pan, F., Chiu, C. H., Pulapura, S., Mehan, M. R., Nunez-Iglesias, J., Zhang, K., et al. (2007). Gene Aging Nexus: A web database and data mining platform for microarray data on aging. Nucleic Acids Research, 35, D756–D759.PubMedCrossRefGoogle Scholar
  50. Parkinson, H., Kapushesky, M., Shojatalab, M., Abeygunawardena, N., Coulson, R., Farne, A., et al. (2007). ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Research, 35, D747–D750.PubMedCrossRefGoogle Scholar
  51. Pavlidis, P., & Noble, W. S. (2001). Analysis of strain and regional variation in gene expression in mouse brain. Genome Biology, 2, RESEARCH0042.Google Scholar
  52. Perkins, D. O., Jeffries, C. D., Jarskog, L. F., Thomson, J. M., Woods, K., Newman, M. A., et al. (2007). MicroRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder. Genome Biology, 8, R27.PubMedCrossRefGoogle Scholar
  53. Polesskaya, O. O., Haroutunian, V., Davis, K. L., Hernandez, I., & Sokolov, B. P. (2003). Novel putative nonprotein-coding RNA gene from 11q14 displays decreased expression in brains of patients with schizophrenia. Journal of Neuroscience Research, 74, 111–122.PubMedCrossRefGoogle Scholar
  54. Ponomarev, I., Maiya, R., Harnett, M. T., Schafer, G. L., Ryabinin, A. E., Blednov, Y. A., et al. (2006). Transcriptional signatures of cellular plasticity in mice lacking the alpha 1 subunit of GABA(A) receptors. Journal of Neuroscience, 26, 5673–5683.PubMedCrossRefGoogle Scholar
  55. Rhodes, D. R., Barrette, T. R., Rubin, M. A., Ghosh, D., & Chinnaiyan, A. M. (2002). Meta-analysis of microarrays: Interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Research, 62, 4427–4433.PubMedGoogle Scholar
  56. Rhodes, D. R., & Chinnaiyan, A. M. (2004). Bioinformatics strategies for translating genome-wide expression analyses into clinically useful cancer markers. Annals of the New York Academy of Sciences, 1020, 32–40.PubMedCrossRefGoogle Scholar
  57. Rhodes, D. R., Yu, J., Shanker, K., Deshpande, N., Varambally, R., Ghosh, D., et al. (2004). ONCOMINE: A cancer microarray database and integrated data-mining platform. Neoplasia (New York, NY), 6, 1–6.Google Scholar
  58. Sandberg, R., Yasuda, R., Pankratz, D. G., Carter, T. A., Del Rio, J. A., Wodicka, L., et al. (2000). Regional and strain-specific gene expression mapping in the adult mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 97, 11038–11043.PubMedCrossRefGoogle Scholar
  59. Schadt, E. E., Lamb, J., Yang, X., Zhu, J., Edwards, S., Guhathakurta, D., et al. (2005). An integrative genomics approach to infer causal associations between gene expression and disease. Nature Genetics, 37, 710–717.PubMedCrossRefGoogle Scholar
  60. Shields, R. (2006). MIAME, we have a problem. Trends in Genetics, 22, 65–66.PubMedCrossRefGoogle Scholar
  61. Sibille, E., Su, J., Leman, S., Le Guisquet, A. M., Ibarguen-Vargas, Y., Joeyen-Waldorf, J., et al. (2007). Lack of serotonin(1B) receptor expression leads to age-related motor dysfunction, early onset of brain molecular aging and reduced longevity. Molecular Psychiatry (in press).Google Scholar
  62. Siddiqui, A. S., Khattra, J., Delaney, A. D., Zhao, Y., Astell, C., Asano, J., et al. (2005). A mouse atlas of gene expression: Large-scale digital gene-expression profiles from precisely defined developing C57BL/6J mouse tissues and cells. Proceedings of the National Academy of Sciences of the United States of America, 102, 18485–18490.PubMedCrossRefGoogle Scholar
  63. Sokolov, B. P., Jiang, L. X., Trivedi, N. S., & Aston, C. (2003). Transcription profiling reveals mitochondrial, ubiquitin and signaling systems abnormalities in postmortem brains from subjects with a history of alcohol abuse or dependence. Journal of Neuroscience Research, 72, 756–767.PubMedCrossRefGoogle Scholar
  64. Spellman, P. T., Miller, M., Stewart, J., Troup, C., Sarkans, U., Chervitz, S., et al. (2002). Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biology, 3, RESEARCH0046.Google Scholar
  65. Stansberg, C., Vik-Mo, A. O., Holdhus, R., Breilid, H., Srebro, B., Petersen, K., et al. (2007). Gene expression profiles in rat brain disclose CNS signature genes and regional patterns of functional specialisation. BioMed Central Genomics, 8.Google Scholar
  66. Stuart, J. M., Segal, E., Koller, D., & Kim, S. K. (2003). A gene-coexpression network for global discovery of conserved genetic modules. Science (New York, NY), 302, 249–255.Google Scholar
  67. Su, A. I., Wiltshire, T., Batalov, S., Lapp, H., Ching, K. A., Block, D., et al. (2004). A gene atlas of the mouse and human protein-encoding transcriptomes. Proceedings of the National Academy of Sciences of the United States of America, 101, 6062–6067.PubMedCrossRefGoogle Scholar
  68. Sugino, K., Hempel, C. M., Miller, M. N., Hattox, A. M., Shapiro, P., Wu, C., et al. (2006). Molecular taxonomy of major neuronal classes in the adult mouse forebrain. Nature Neuroscience, 9, 99–107.PubMedCrossRefGoogle Scholar
  69. Sunkin, S. M. (2006). Towards the integration of spatially and temporally resolved murine gene expression databases. Trends in Genetics, 22, 211–217.PubMedCrossRefGoogle Scholar
  70. Tkachev, D., Mimmack, M. L., Ryan, M. M., Wayland, M., Freeman, T., Jones, P. B., et al. (2003). Oligodendrocyte dysfunction in schizophrenia and bipolar disorder. Lancet, 362, 798–805.PubMedCrossRefGoogle Scholar
  71. Vazquez-Chona, F. R., Khan, A. N., Chan, C. K., Moore, A. N., Dash, P. K., Hernandez, M. R., et al. (2005). Genetic networks controlling retinal injury. Molecular Vision, 11, 958–970.PubMedGoogle Scholar
  72. Watson, R. (2007). EC to promote open access publishing. Builders Merchants Journal (Clinical Research Education), 334, 389.CrossRefGoogle Scholar
  73. Williams, R. W. (2006). Expression genetics and the phenotype revolution. Mammalian Genome, 17, 496–502.PubMedCrossRefGoogle Scholar
  74. Zapala, M. A., Hovatta, I., Ellison, J. A., Wodicka, L., Del Rio, J. A., Tennant, R., et al. (2005). Adult mouse brain gene expression patterns bear an embryologic imprint. Proceedings of the National Academy of Sciences of the United States of America, 102, 10357–10362.PubMedCrossRefGoogle Scholar
  75. Zhang, W., Morris, Q. D., Chang, R., Shai, O., Bakowski, M. A., Mitsakakis, N., et al. (2004). The functional landscape of mouse gene expression. Journal of Biology, 3, 21.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  1. 1.Department of Psychiatry, UBC Bioinformatics Centre (UBiC)University of British ColumbiaVancouverCanada

Personalised recommendations