Neuroinformatics

, Volume 5, Issue 2, pp 127–138 | Cite as

Interoperability of Neuroscience Modeling Software: Current Status and Future Directions

  • Robert C. Cannon
  • Marc-Oliver Gewaltig
  • Padraig Gleeson
  • Upinder S. Bhalla
  • Hugo Cornelis
  • Michael L. Hines
  • Fredrick W. Howell
  • Eilif Muller
  • Joel R. Stiles
  • Stefan Wils
  • Erik De Schutter
Article

Abstract

Neuroscience increasingly uses computational models to assist in the exploration and interpretation of complex phenomena. As a result, considerable effort is invested in the development of software tools and technologies for numerical simulations and for the creation and publication of models. The diversity of related tools leads to the duplication of effort and hinders model reuse. Development practices and technologies that support interoperability between software systems therefore play an important role in making the modeling process more efficient and in ensuring that published models can be reliably and easily reused. Various forms of interoperability are possible including the development of portable model description standards, the adoption of common simulation languages or the use of standardized middleware. Each of these approaches finds applications within the broad range of current modeling activity. However more effort is required in many areas to enable new scientific questions to be addressed. Here we present the conclusions of the “Neuro-IT Interoperability of Simulators” workshop, held at the 11th computational neuroscience meeting in Edinburgh (July 19–20 2006; http://www.cnsorg.org). We assess the current state of interoperability of neural simulation software and explore the future directions that will enable the field to advance.

Keywords

Neural simulation software Simulation language Standards XML Model publication 

References

  1. Baxter, S. M., Day, S. W., Fetrow, J. S., & Reisinger, S. J. (2006). Scientific software development is not an oxymoron. PLoS Comput Biol, 2, e87.PubMedCrossRefGoogle Scholar
  2. Bednar, J. A., Choe, Y., De Paula, J., Miikkulainen, R., Provost, J., & Tversky, T. (2003). Modeling cortical maps with topographica. Neurocomputing, 58, 1129–1135.CrossRefGoogle Scholar
  3. Bhalla, U. S. (2001). Modeling networks of signaling pathways. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 25–48). Boca Raton: CRC.Google Scholar
  4. Bower, J. M., & Beeman, D. (1998). The book of Genesis: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed.). New York: Springer.Google Scholar
  5. Brette, R., Rudolph, M., Carnevale, T., Hines, M., Beeman, D., Bower, J. M., et al. (2007) Simulation of networks of spiking neurons: A review of tools and strategies. http://arxiv.org/abs/q-bio.NC/0611089.
  6. Brunel, N., & Wang, X.-J. (2001). Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. Journal of Computational Neuroscience, 11, 63–85.PubMedCrossRefGoogle Scholar
  7. Cannon, R. C., Hasselmo, M. E., & Koene, R. A. (2003) From biophysics to behavior: Catacomb2 and the design of biologically plausible models for spatial navigation. Neuroinformatics, 1, 3–42.PubMedCrossRefGoogle Scholar
  8. Carnevale, N. T., & Hines, M. L. (2006). The NEURON book. UK: Cambridge University Press.Google Scholar
  9. Chen, C., & Hess, P. (1990). Mechanism of gating of T-type calcium channels. Journal of General Physiology, 96, 603–630. DOI 10.1085/jgp.96.3.603.PubMedCrossRefGoogle Scholar
  10. Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience: An introduction and workshop summary. Brains, Minds, and Media, 1, bmm228 (urn:nbn:de:0009-3-2282).Google Scholar
  11. Crook, S., Gleeson, P., Howell, F., Svitak, J., & Silver, R. A. (2007). MorphML: Level 1 of the NeuroML standards for neuronal morphology data and model specification. Neuroinformatics, 5, (In press).Google Scholar
  12. Cuellar, A. A., Lloyd, C. M., Nielsen, P. F., Bullivant, D. P., Nickerson, D. P., & Hunter, P. J. (2003). An overview of CellML 1.1, a biological model description language. Simulation, 79, 740–747.CrossRefGoogle Scholar
  13. De Schutter, E., & Beeman, D. (1998). Speeding up GENESIS simulations. In J. M. Bower & D. Beeman (Eds.), The book of GENESIS: Exploring realistic neural models with the GEneral NEural SImulation System (2nd ed., pp. 329–347). Springer New York: Telos.Google Scholar
  14. De Schutter, E., & Bower, J. M. (1994). An active membrane model of the cerebellar Purkinje-cell .2. Simulation of synaptic responses. Journal of Neurophysiology, 71, 401–419.PubMedGoogle Scholar
  15. De Schutter, E., Ekeberg, Ö., Kotaleski, J. H., Achard, P., & Lansner, A. (2005). Biophysically detailed modelling of microcircuits and beyond. Trends in Neurosciences, 28, 562–569.PubMedCrossRefGoogle Scholar
  16. Diesmann, M., & Gewaltig, M.-O. (2002). NEST: An environment for neural systems simulations in Forschung und wissenschaftliches Rechnen, GWDG-Bericht (pp 43–70). In T. Plesser & V. Macho (Eds.). Göttingen (D): Ges. fuer Wissenschaftliche Datenverarbeitung.Google Scholar
  17. Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J., Brinkley, J. F., Dale, A. M., et al. (2003). Towards effective and rewarding data sharing. Neuroinformatics, 3, 286–289.Google Scholar
  18. Goddard, N. H., Beeman, D., Cannon, R. C., Cornelis, H., Gewaltig, M.-O., Hood, G., et al. (2002). NeuroML for plug and play neuronal modeling. Neurocomputing, 44, 1077–1081.CrossRefGoogle Scholar
  19. Goddard, N., Hood, G., Howell, F., Hines, M., & De Schutter, E. (2001). NEOSIM: Portable large-scale plug and play modelling. Neurocomputing, 38, 1657–1661.CrossRefGoogle Scholar
  20. Hille, B. (2001). Ionic channels of excitable membranes. Sunderland, MA: Sinauer Associates INC.Google Scholar
  21. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRefGoogle Scholar
  22. Hines, M. L., & Carnevale, N. T. (2000). Expanding NEURON’s repertoire of mechanisms with NMODL. Neural Computation, 12, 995–1007.PubMedCrossRefGoogle Scholar
  23. Hucka, M., Finney, A., Sauro, H. M., Bolouri, H., Doyle, J. C., Kitano, H., et al. (2003). The systems biology markup language (SBML): A medium for representation and exchange of biochemical network models. Bioinformatics, 19, 524–531. DOI 10.1093/bioinformatics/btg015.PubMedCrossRefGoogle Scholar
  24. Insel, T. R., Volkow, N. D., Li, T. K., Battey, J. F., & Landis, S. C. (2003). Neuroscience networks: Data-sharing in an information age. PLoS Biol, 1, e17. DOI 10.1371/journal.pbio.0000017.PubMedCrossRefGoogle Scholar
  25. Koslow, S. H. (2002). Sharing primary data: A threat or asset to discovery? Nature reviews. Neuroscience, 3, 311–313.PubMedCrossRefGoogle Scholar
  26. Kötter, R., Nielse, P., Dyhrfjeld-Johnsen, J., Sommer, F. T., & Northoff, G. (2002). Multi-level neuron and network modeling in computational neuroanatomy. In G. Ascoli (Ed.), Computational neuroanatomy: Principles and methods. Totowa, NJ: Humana.Google Scholar
  27. Le Novere, N., Bornstein, B., Broicher, A., Courtot, M., Donizelli, M., Dharuri, H., et al. (2006). BioModels database: A free, centralized database of curated, published, quantitative kinetic models of biochemical and cellular systems. Nucleic Acids Research, 34, D689–D691. DOI 10.1093/nar/gkj092.PubMedCrossRefGoogle Scholar
  28. Lloyd, W. J. (1994). Practical advantages of declarative programming. In Proc. Joint Conference on Declarative Programming, GULP-PRODE.Google Scholar
  29. Migliore, M., Morse, T. M., Davison, A. P., Marenco, L., Shepherd, G. M., Hines, M. L., et al. (2003). ModelDB: Making models publicly accessible to support computational neuroscience. Neuroinformatics, 1, 135–139.PubMedCrossRefGoogle Scholar
  30. Roth, A., Nusser, Z., & Häusser, M. (2000). Monte Carlo simulations of synaptic transmission in detailed three-dimensional reconstructions of cerebellar neuropil. European Journal of Neuroscience, 12(Suppl. 11), 14.Google Scholar
  31. Schwab, M., Karrenbach, M., & Claerbout, J. (2000). Making scientific computations reproducible. Computing in Science & Engineering, 2, 61–67.CrossRefGoogle Scholar
  32. Stiles, J. R., & Bartol, T. M. (2001). Methods for simulating realistic synaptic microphysiology using MCell. In E. De Schutter (Ed.), Computational neuroscience: Realistic modeling for experimentalists (pp. 87–127). Boca Raton: CRC.Google Scholar
  33. Traub, R. D., Contreras, D., Cunningham, M. O., Murray, H., LeBeau, F. E. N., Roopun, A., et al. (2005). Single-column thalamocortical network model exhibiting gamma oscillations, sleep spindles and epileptogenic bursts. Journal of Neurophysiology, 93, 2194–2232.PubMedCrossRefGoogle Scholar
  34. Traub, R. D., Jefferys, J. G. R., Miles, R., Whittington, M. A., & Toth, K. (1994). A branching dendritic model of a rodent CA3 pyramidal neuron. Journal of Physiology (London. Print), 481, 7995.Google Scholar
  35. Vandenberg, C. A., & Bezanilla, F. (1991). A sodium-channel gating model based on single channel, macroscopic ionic, and gating currents in the squid giant-axon. Biophysical Journal, 60, 1511–1533.PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Robert C. Cannon
    • 1
  • Marc-Oliver Gewaltig
    • 2
  • Padraig Gleeson
    • 3
  • Upinder S. Bhalla
    • 4
  • Hugo Cornelis
    • 5
  • Michael L. Hines
    • 6
  • Fredrick W. Howell
    • 1
  • Eilif Muller
    • 7
  • Joel R. Stiles
    • 8
  • Stefan Wils
    • 9
  • Erik De Schutter
    • 9
  1. 1.Textensor LimitedEdinburghUK
  2. 2.Honda Research Institute Europe GmbHOffenbachGermany
  3. 3.Department of PhysiologyUniversity College LondonLondonUK
  4. 4.National Centre for Biological SciencesTata Institute of Fundamental ResearchBangaloreIndia
  5. 5.University of Texas San AntonioSan AntonioUSA
  6. 6.Section of NeurobiologyYale University School of MedicineNew HavenUSA
  7. 7.Kirchhoff Institute for PhysicsUniversity of HeidelbergHeidelbergGermany
  8. 8.Center for Quantitative Biological SimulationPittsburgh Supercomputing CenterPittsburgUSA
  9. 9.Theoretical NeurobiologyUniversity of AntwerpAntwerpenBelgium

Personalised recommendations