, Volume 5, Issue 2, pp 96–104 | Cite as

MorphML: Level 1 of the NeuroML Standards for Neuronal Morphology Data and Model Specification

  • Sharon CrookEmail author
  • Padraig Gleeson
  • Fred Howell
  • Joseph Svitak
  • R. Angus Silver


Quantitative neuroanatomical data are important for the study of many areas of neuroscience, and the complexity of problems associated with neuronal structure requires that research from multiple groups across many disciplines be combined. However, existing neuron-tracing systems, simulation environments, and tools for the visualization and analysis of neuronal morphology data use a variety of data formats, making it difficult to exchange data in a readily usable way. The NeuroML project was initiated to address these issues, and here we describe an extensible markup language standard, MorphML, which defines a common data format for neuronal morphology data and associated metadata to facilitate data and model exchange, database creation, model publication, and data archiving. We describe the elements of the standard in detail and outline the mappings between this format and those used by a number of popular applications for reconstruction, simulation, and visualization of neuronal morphology.


Neuronal morphology Neuronal digitization MorphML NeuroML Neuroanatomical data Neuroscience standards Neurolucida 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ascoli, G. A. (2006). Mobilizing the base of neuroscience data: the case of neuronal morphologies. Nature Reviews Neuroscience, 7, 318–324.PubMedCrossRefGoogle Scholar
  2. Ascoli, G. A., Krichmar, J. L., Nasuto, S. J., & Senft, S. L. (2001). Generation, description and storage of dendritic morphology data. Philosophical transactions of the Royal Society of London. Series B, Biological Sciences, 356, 1131–1145.PubMedCrossRefGoogle Scholar
  3. Beeman, D., & Bower, J. M. (2004). Simulator-independent representation of ionic conductance models with ChannelDB. Neurocomputers, 58–60, 1085–1090.CrossRefGoogle Scholar
  4. Beeman, D., Bower, J. M, De Schutter, E., Efthimiadis, E. N., Goddard, N., & Leigh, J. (1997). The GENESIS simulator-based neuronal database. In: S. H. Koslow & M. F. Huerta (Eds.), Neuroinformatics: An overview of the human brain project (pp. 57–80). Mahwah: Lawrence Erlbaum Associates.Google Scholar
  5. Bower, J. M., & Beeman, D. (1998). The book of GENESIS: Exploring realistic neural models with the general neural simulation system, 2nd ed. New York: Springer.Google Scholar
  6. Brown, K. M., Donohue, D. E., D’Alessandro, G., & Ascoli, G. A. (2005). A cross-platform freeware tool for digital reconstruction of neuronal arborizations from image stacks. Neuroinformatics, 3, 343–360.PubMedCrossRefGoogle Scholar
  7. Cannon, R. C., Howell, F. W., Goddard, N. H., & De Shutter, E. (2002). Non-curated distributed databases for experimental data and models in neuroscience. Network: Computation in Neural Systems, 13, 415–428.CrossRefGoogle Scholar
  8. Cannon, R. C., Turner, D. A., Pyapali, G., & Wheal, H. V. (1998). An on-line archive of reconstructed hippocampal neurons. Journal of Neuroscience Methods, 84, 49–54.PubMedCrossRefGoogle Scholar
  9. Crook, S., Beeman, D., Gleeson, P., & Howell, F. (2005). XML for model specification in neuroscience: An introduction & workshop summary. Brains, Minds, and Media, 1, bmm228 (urn:nbn:de:0009-3-2282).Google Scholar
  10. Crook, S. & Howell, F. (2007). XML for data representation & model specification in neuroscience. In: C. Crasto (Ed.), Neuroinformatics, methods in molecular biology book series. Totowa: Humana.Google Scholar
  11. Gardner, D., Toga, A. W., Ascoli, G. A., Beatty, J. T., Brinkley, J. F., Dale, A. M., et al. (2003). Towards effective & rewarding data sharing. Neuroinformatics, 1, 289–295.PubMedCrossRefGoogle Scholar
  12. Glaser, J. R., & Glaser, E. M. (1990). Neuron imaging with Neurolucida—a PC-based system for image combining microscopy. Computerized Medical Imaging and Graphics, 14, 307–317.PubMedCrossRefGoogle Scholar
  13. Gleeson, P., Steuber, V., & Silver, R. A. (2007). neuroConstruct: A tool for modeling networks of neurons in 3D space. Neuron, 54, 219–235.PubMedCrossRefGoogle Scholar
  14. Goddard, N. H., Hucka, M., Howell, F., Cornelis, H., Shankar, K., & Beeman, D. (2001). Towards NeuroML: Model description methods for collaborative modelling in neuroscience. Philosophical Transactions of the Royal Society of London B, 356, 1209–1228.CrossRefGoogle Scholar
  15. Hedley, W. J., Nelson, M. R., Bullivant, D. P., & Nielsen, P. F. (2001). A short introduction to CellML. Philosophical Transactions of the Royal Society of London A, 359, 1073–1089.CrossRefGoogle Scholar
  16. Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–1209.PubMedCrossRefGoogle Scholar
  17. Hines, M. L., & Carnevale, N. T. (2001). Neuron: a tool for neuroscientists. The Neuroscientist, 7, 123–135.PubMedCrossRefGoogle Scholar
  18. Hines, M. L., Morse, T., Migliore, M., Carnevale, N. T., & Shepherd, G. M. (2004). ModelDB: A database to support computational neuroscience. Journal of Computational Neuroscience, 17, 7–11.PubMedCrossRefGoogle Scholar
  19. Holmes, W. R., Ambros-Ingerson, J., & Grover, L. M. (2006). Fitting experimental data to models that use morphological data from public databases. Journal of Computational Neuroscience, 20, 349–365.PubMedCrossRefGoogle Scholar
  20. Hucka, M. et al. (2003). The system biology markup language (SBML): A medium for representation & exchange of biochemical network models. Bioinformatics, 19, 524–531.PubMedCrossRefGoogle Scholar
  21. Jacobs, G. A., & Nevin R. (1991). Anatomical relationships between sensory afferent arborizations in the cricket cercal system. Anatomical Record, 231, 563–572.PubMedCrossRefGoogle Scholar
  22. Keator, D. B., Gadde S., Grethe, J. S., Taylor, D. V., & Potkin, S. G. (2006). FIRST BIRN. A general XML schema & SPM toolbox for storage of neuro-imaging results & anatomical labels. Neuroinformatics, 4, 199–212.PubMedCrossRefGoogle Scholar
  23. Mainen, Z. F., & Sejnowski, T. J. (1996). Influence of dendritic structure on firing pattern in model neocortical neurons. Nature, 382, 363–366.PubMedCrossRefGoogle Scholar
  24. Martone, M. E., Gupta, A., & Ellisman, M. H. (2004). e-Neuroscience: Challenges & triumphs in integrating distributed data from molecules to brains. Nature Neuroscience, 7, 467–472.PubMedCrossRefGoogle Scholar
  25. Qi, W., & Crook, S. (2004). Tools for neuroinformatic data exchange: An XML application for neuronal morphology data. Neurocomputing, 58C–60C, 1091–1095.CrossRefGoogle Scholar
  26. Scorcioni, R., Lazarewicz, M. T., & Ascoli, G. A. (2004). Quantitative morphometry of hippocampal pyramidal cells: Differences between anatomical classes and reconstructing laboratories. Journal of Comparative Neurology, 473, 177–193.PubMedCrossRefGoogle Scholar
  27. Szilagyi, T., & De Schutter, E. (2004). Effects of variability in anatomical reconstruction techniques on models of synaptic integration by dendrites: a comparison of three Internet archives. European Journal of Neuroscience, 19, 1257–1266.PubMedCrossRefGoogle Scholar
  28. Vetter, P., Roth, A., & Hausser, M. (2001). Propagation of action potentials in dendrites depends on dendritic morphology. Journal of Neurophysiology, 85, 926–937.PubMedGoogle Scholar

Copyright information

© Humana Press Inc. 2007

Authors and Affiliations

  • Sharon Crook
    • 1
    Email author
  • Padraig Gleeson
    • 2
  • Fred Howell
    • 3
  • Joseph Svitak
    • 4
  • R. Angus Silver
    • 2
  1. 1.Department of Mathematics and StatisticsSchool of Life Sciences, and Center for Adaptive Neural Systems, Arizona State UniversityTempeUSA
  2. 2.Department of PhysiologyUniversity College LondonLondonUK
  3. 3.Institute of Adaptive and Neural ComputationUniversity of EdinburghEdinburghUK
  4. 4.Research Imaging CenterUniversity of Texas Health Science Center at San AntonioSan AntonioUSA

Personalised recommendations