Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Subclinical hypothyroidism is associated with albuminuria in Japanese nondiabetic subjects

Abstract

Purpose

Thyroid dysfunction is a risk factor of cardiovascular disease (CVD), and albuminuria is a predictor of CVD. For preventing the CVD, it is essential to clarify from which stage of thyroid dysfunction the risk of CVD starts developing. We thus investigated the association between subclinical thyroid dysfunction and albuminuria, focusing on a nondiabetic general population.

Methods

We analyzed the data of 17,221 nondiabetic subjects who underwent annual health checkups by multivariate logistic regression analyses.

Results

Compared with the subjects with euthyroidism, those with subclinical hypothyroidism presented a higher prevalence of albuminuria. By a multivariate logistic regression analysis, subclinical hypothyroidism showed a significant and independent association with the high prevalence of albuminuria compared with euthyroidism (OR 1.64, 95% CI 1.21–2.21, p = 0.001). In accord with this result, the analysis in which the lowest quartile of thyroid stimulating hormone (TSH) concentration (<0.96 µIU/mL) was used as a reference revealed that the highest quartile (>2.07 µIU/mL) had a significant and independent association with the prevalence of albuminuria (OR 1.23, 95% CI 1.01–1.51, p = 0.04). One microliter unit per milliliter increase of the serum concentration of TSH also had a significant and independent association with the prevalence of albuminuria (OR 1.07, 95% CI 1.02–1.12, p = 0.006). The association between subclinical hyperthyroidism and the prevalence of albuminuria was not significant.

Conclusion

Our data indicated that subclinical hypothyroidism was significantly and independently associated with the high prevalence of albuminuria.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    A. Jabbar, A. Pingitore, S.H. Pearce, A. Zaman, G. Iervasi, S. Razvi, Thyroid hormones and cardiovascular disease. Nat. Rev. Cardiol. 14(1), 39–55 (2017). https://doi.org/10.1038/nrcardio.2016.174

  2. 2.

    N. Rodondi, W.P. den Elzen, D.C. Bauer, A.R. Cappola, S. Razvi, J.P. Walsh, B.O. Asvold, G. Iervasi, M. Imaizumi, T.H. Collet, A. Bremner, P. Maisonneuve, J.A. Sgarbi, K.T. Khaw, M.P. Vanderpump, A.B. Newman, J. Cornuz, J.A. Franklyn, R.G. Westendorp, E. Vittinghoff, J. Gussekloo, C. Thyroid Studies, Subclinical hypothyroidism and the risk of coronary heart disease and mortality. JAMA 304(12), 1365–1374 (2010). https://doi.org/10.1001/jama.2010.1361

  3. 3.

    C. McQuade, M. Skugor, D.M. Brennan, B. Hoar, C. Stevenson, B.J. Hoogwerf, Hypothyroidism and moderate subclinical hypothyroidism are associated with increased all-cause mortality independent of coronary heart disease risk factors: a PreCIS database study. Thyroid 21(8), 837–843 (2011). https://doi.org/10.1089/thy.2010.0298

  4. 4.

    H.C. Gerstein, J.F. Mann, Q. Yi, B. Zinman, S.F. Dinneen, B. Hoogwerf, J.P. Halle, J. Young, A. Rashkow, C. Joyce, S. Nawaz, S: Yusuf, Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 286(4), 421–426 (2001)

  5. 5.

    A. Singh, S.C. Satchell, Microalbuminuria: causes and implications. Pediatr. Nephrol. 26(11), 1957–1965 (2011). https://doi.org/10.1007/s00467-011-1777-1

  6. 6.

    T. Yasuda, H. Kaneto, A. Kuroda, T. Yamamoto, M. Takahara, T. Naka, K. Miyashita, K. Fujisawa, F. Sakamoto, N. Katakami, T.A. Matsuoka, I. Shimomura, Subclinical hypothyroidism is independently associated with albuminuria in people with type 2 diabetes. Diabetes Res. Clin. Pract. 94(3), e75–e77 (2011). https://doi.org/10.1016/j.diabres.2011.08.019

  7. 7.

    L. Zhang, G. Yang, Z. Su, J. Yang, Correlation between subclinical hypothyroidism and renal function in patients with diabetes mellitus. Nephrology 22(10), 790–795 (2017). https://doi.org/10.1111/nep.12852

  8. 8.

    M.M. El-Eshmawy, H.A. Abd El-Hafez, W.O. El Shabrawy, I.A. Abdel Aal, Subclinical hypothyroidism is independently associated with microalbuminuria in a cohort of prediabetic egyptian adults. Diabetes Metab. J. 37(6), 450–457 (2013). https://doi.org/10.4093/dmj.2013.37.6.450

  9. 9.

    T.A. Tuliani, M. Shenoy, K. Belgrave, A. Deshmukh, S. Pant, A. Hilliard, L. Afonso, Role of microalbuminuria in predicting cardiovascular mortality in individuals with subclinical hypothyroidism. Am. J. Med. Sci. 354(3), 285–290 (2017). https://doi.org/10.1016/j.amjms.2017.04.022

  10. 10.

    Y. Zhou, L. Ye, T. Wang, J. Hong, Y. Bi, J. Zhang, B. Xu, J. Sun, X. Huang, M. Xu, Free triiodothyronine concentrations are inversely associated with microalbuminuria. Int. J. Endocrinol. 2014, 959781 (2014). https://doi.org/10.1155/2014/959781

  11. 11.

    A. Levin, P.E. Stevens, Summary of KDIGO 2012 CKD guideline: behind the scenes, need for guidance, and a framework for moving forward. Kidney Int. 85(1), 49–61 (2014). https://doi.org/10.1038/ki.2013.444

  12. 12.

    M.J. Huang, R.B. Wei, J. Zhao, T.Y. Su, Q.P. Li, X. Yang, X.M. Chen, Albuminuria and endothelial dysfunction in patients with non-diabetic chronic kidney disease. Med. Sci. Monit. 23, 4447–4453 (2017). https://doi.org/10.12659/msm.903660

  13. 13.

    R. Pedrinelli, G. Dell’Omo, G. Penno, M: Mariani, Non-diabetic microalbuminuria, endothelial dysfunction and cardiovascular disease. Vasc. Med. 6(4), 257–264 (2001). https://doi.org/10.1177/1358836x0100600410

  14. 14.

    E. Imai, Y. Yasuda, S. Matsuo, A decade after the KDOQI CKD guidelines: a perspective from Japan. Am. J. Kidney Dis. 60(5), 729–730 (2012). https://doi.org/10.1053/j.ajkd.2012.08.025

  15. 15.

    C.P. Wen, T.Y. David Cheng, S.P. Tsai, H.T. Chan, H.L. Hsu, C.C. Hsu, M.P. Eriksen, Are Asians at greater mortality risks for being overweight than Caucasians? Redefining obesity for Asians. Public Health Nutr. 12(4), 497–506 (2009). https://doi.org/10.1017/s1368980008002802

  16. 16.

    A.S. Levey, K.U. Eckardt, Y. Tsukamoto, A. Levin, J. Coresh, J. Rossert, D. De Zeeuw, T.H. Hostetter, N. Lameire, G. Eknoyan, Definition and classification of chronic kidney disease: a position statement from kidney disease: improving global outcomes (KDIGO). Kidney Int. 67(6), 2089–2100 (2005). https://doi.org/10.1111/j.1523-1755.2005.00365.x

  17. 17.

    A. Toda, S. Hara, M. Kato, H. Tsuji, Y. Arase, Association of thyrotropin concentration with chronic kidney disease in a Japanese general population cohort. Nephron 142(2), 91–97 (2019). https://doi.org/10.1159/000497326

  18. 18.

    P. Iglesias, M.A. Bajo, R. Selgas, J.J. Diez, Thyroid dysfunction and kidney disease: an update. Rev. Endocr. Metab. Disord. 18(1), 131–144 (2017). https://doi.org/10.1007/s11154-016-9395-7

  19. 19.

    J.L.C. Anderson, E.G. Gruppen, L. van Tienhoven-Wind, M.F. Eisenga, H. de Vries, R.T. Gansevoort, S.J.L. Bakker, R.P.F. Dullaart, Glomerular filtration rate is associated with free triiodothyronine in euthyroid subjects: comparison between various equations to estimate renal function and creatinine clearance. Eur. J. Intern. Med. 48, 94–99 (2018). https://doi.org/10.1016/j.ejim.2017.10.009

  20. 20.

    Y. Zhang, Y. Chang, S. Ryu, J. Cho, W.Y. Lee, E.J. Rhee, M.J. Kwon, R. Pastor-Barriuso, S. Rampal, W.K. Han, H. Shin, E. Guallar, Thyroid hormone levels and incident chronic kidney disease in euthyroid individuals: the Kangbuk Samsung Health Study. Int J. Epidemiol. 43(5), 1624–1632 (2014). https://doi.org/10.1093/ije/dyu126

  21. 21.

    S. Razvi, A. Shakoor, M. Vanderpump, J.U. Weaver, S.H. Pearce, The influence of age on the relationship between subclinical hypothyroidism and ischemic heart disease: a metaanalysis. J. Clin. Endocrinol. Metab. 93(8), 2998–3007 (2008). https://doi.org/10.1210/jc.2008-0167

  22. 22.

    B.O. Asvold, L.J. Vatten, T.I. Nilsen, T. Bjoro, The association between TSH within the reference range and serum lipid concentrations in a population-based study. The HUNT Study. Eur. J. Endocrinol. 156(2), 181–186 (2007). https://doi.org/10.1530/eje.1.02333

  23. 23.

    S. Taddei, N. Caraccio, A. Virdis, A. Dardano, D. Versari, L. Ghiadoni, A. Salvetti, E. Ferrannini, F. Monzani, Impaired endothelium-dependent vasodilatation in subclinical hypothyroidism: beneficial effect of levothyroxine therapy. J. Clin. Endocrinol. Metab. 88(8), 3731–3737 (2003). https://doi.org/10.1210/jc.2003-030039

  24. 24.

    T. Nagasaki, M. Inaba, Y. Kumeda, Y. Hiura, K. Shirakawa, S. Yamada, Y. Henmi, E. Ishimura, Y. Nishizawa, Increased pulse wave velocity in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 91(1), 154–158 (2006). https://doi.org/10.1210/jc.2005-1342

  25. 25.

    T. Nagasaki, M. Inaba, S. Yamada, K. Shirakawa, Y. Nagata, Y. Kumeda, Y. Hiura, H. Tahara, E. Ishimura, Y. Nishizawa, Decrease of brachial-ankle pulse wave velocity in female subclinical hypothyroid patients during normalization of thyroid function: a double-blind, placebo-controlled study. Eur. J. Endocrinol. 160(3), 409–415 (2009). https://doi.org/10.1530/eje-08-0742

  26. 26.

    I. Klein, K. Ojamaa, Thyroid hormone and the cardiovascular system. N. Engl. J. Med. 344(7), 501–509 (2001). https://doi.org/10.1056/NEJM200102153440707

  27. 27.

    F. Monzani, V. Di Bello, N. Caraccio, A. Bertini, D. Giorgi, C. Giusti, E. Ferrannini, Effect of levothyroxine on cardiac function and structure in subclinical hypothyroidism: a double blind, placebo-controlled study. J. Clin. Endocrinol. Metab. 86(3), 1110–1115 (2001). https://doi.org/10.1210/jcem.86.3.7291

  28. 28.

    B. Biondi, S. Fazio, E.A. Palmieri, C. Carella, N. Panza, A. Cittadini, F. Bone, G. Lombardi, L. Sacca, Left ventricular diastolic dysfunction in patients with subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 84(6), 2064–2067 (1999). https://doi.org/10.1210/jcem.84.6.5733

  29. 29.

    B. Biondi, L. Bartalena, D.S. Cooper, L. Hegedus, P. Laurberg, G.J. Kahaly, The 2015 European thyroid association guidelines on diagnosis and treatment of endogenous subclinical hyperthyroidism. Eur. Thyroid J. 4(3), 149–163 (2015). https://doi.org/10.1159/000438750

  30. 30.

    S.H. Pearce, G. Brabant, L.H. Duntas, F. Monzani, R.P. Peeters, S. Razvi, J.L. Wemeau, 2013 ETA guideline: management of subclinical hypothyroidism. Eur. Thyroid J. 2(4), 215–228 (2013). https://doi.org/10.1159/000356507

Download references

Acknowledgements

The authors are grateful to all of the participants, other physicians, medical staff, and other contributors to this study. This research did not receive any specific grant from any funding agency in the public, commercial, or not-for-profit sector.

Author information

Correspondence to Akiko Toda.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

The requirement for informed consent was waived because we used de-identified retrospective data.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toda, A., Hara, S., Tsuji, H. et al. Subclinical hypothyroidism is associated with albuminuria in Japanese nondiabetic subjects. Endocrine (2020). https://doi.org/10.1007/s12020-020-02220-9

Download citation

Keywords

  • Subclinical hypothyroidism
  • Albuminuria
  • Epidemiology
  • Thyroid stimulating hormone