Advertisement

Endocrine

pp 1–13 | Cite as

Effects of metformin on blood lipid profiles in nondiabetic adults: a meta-analysis of randomized controlled trials

  • Shuwei Weng
  • Yonghong Luo
  • Ziyu Zhang
  • Xin Su
  • Daoquan PengEmail author
Meta-Analysis

Abstract

Purpose

To evaluate the effects of metformin on serum lipid profiles in nondiabetic adults through a comprehensive meta-analysis.

Methods

In the present meta-analysis, randomized and controlled trials were collected by searching PubMed, Embase, and Cochrane Libraries from inception to April 2019. Compared with placebos, the effects of metformin treatment on lipid profiles in nondiabetic adults were evaluated.

Results

Forty-seven studies from 45 articles including 5731 participants were enrolled. Pooled results showed that metformin had significant effects on total cholesterol (mean change −6.57 mg/dl; 95% CI −9.66, −3.47; P = 0.000) and LDL-c (mean change −4.69 mg/dl; 95% CI −7.38, −2.00; P = 0.001), but insignificant effects on HDL-c (mean change −4.33 mg/dl; 95% CI −9.62, 0.96; P = 0.109) and triglyceride (mean change −0.85 mg/dl; 95% CI −0.36, 2.06; P = 0.169). Significant heterogeneities were found for all lipid profiles (HDL-c = 85.5%; LDL-c = 59.9%; total cholesterol = 75.3% and triglyceride = 67.1%). Different from the pooled data, in a subgroup analysis, the effect of metformin on triglyceride in patients with polycystic ovarian syndrome (PCOS) was significant with a mean reduction of 8.15 mg/dl. In addition, sensitivity analysis showed that the pooled effects of metformin on serum lipid profiles were stable. Publication bias derived from funnel plots or Begg’s tests (P = 0.933, 0.860, 0.904, and 0.567 for HDL-c, LDL-c, total cholesterol, and triglyceride, respectively) was not significant.

Conclusion

This meta-analysis revealed that metformin could reduce total cholesterol and LDL-c in nondiabetic adults. In addition, metformin might exert a triglyceride-lowering effect in nondiabetics with PCOS status.

Keywords

Metformin Meta-analysis Nondiabetic Serum lipid 

Notes

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China [nos. 81870336 and 81670426 to D.P.].

Authors contributions

S.W. conceived the study and participated in its design. S.W. and Y.L. conducted the systematic literature review. S.W. and X.S. performed data analyses. S.W. and Z.Z. drafted the manuscript. If there would be an inconformity, corresponding author would make a final decision. All authors have read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

All authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript, including employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties. Peer reviewers on this manuscript have no relevant financial relationships to disclose.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors. We admit that this meta-analysis is complied with ethical standards. Since this is a meta-analysis based on the published articles, therefore the ethical approval is not applicable.

Supplementary material

12020_2020_2190_MOESM1_ESM.docx (54.3 mb)
Supplementary Information

References

  1. 1.
    C. Bommer, E. Heesemann, V. Sagalova, J. Manne-Goehler, R. Atun, T. Barnighausen, S. Vollmer, The global economic burden of diabetes in adults aged 20–79 years: a cost-of-illness study. Lancet Diabetes Endocrinol. 5(6), 423–430 (2017).  https://doi.org/10.1016/s2213-8587(17)30097-9 CrossRefPubMedGoogle Scholar
  2. 2.
    S. Roberts, E. Barry, D. Craig, M. Airoldi, G. Bevan, T. Greenhalgh, Preventing type 2 diabetes: systematic review of studies of cost-effectiveness of lifestyle programmes and metformin, with and without screening, for pre-diabetes. BMJ Open 7(11), e017184 (2017).  https://doi.org/10.1136/bmjopen-2017-017184 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    I. Hopper, B. Billah, M. Skiba, H. Krum, Prevention of diabetes and reduction in major cardiovascular events in studies of subjects with prediabetes: meta-analysis of randomised controlled clinical trials. Eur. J. Cardiovasc. Prev. Rehabil. 18(6), 813–823 (2011).  https://doi.org/10.1177/1741826711421687 CrossRefPubMedGoogle Scholar
  4. 4.
    M.K. Ali, K.M. Bullard, S. Saydah, G. Imperatore, E.W. Gregg, Cardiovascular and renal burdens of prediabetes in the USA: analysis of data from serial cross-sectional surveys, 1988–2014. Lancet Diabetes Endocrinol. 6(5), 392–403 (2018).  https://doi.org/10.1016/s2213-8587(18)30027-5 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    C. Merlotti, A. Morabito, A.E. Pontiroli, Prevention of type 2 diabetes; a systematic review and meta-analysis of different intervention strategies. Diabetes Obes. Metab. 16(8), 719–727 (2014).  https://doi.org/10.1111/dom.12270 CrossRefPubMedGoogle Scholar
  6. 6.
    UK Prospective Diabetes Study (UKPDS) Group, Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 352(9131), 854–865 (1998).  https://doi.org/10.1016/s0140-6736(98)07037-8 CrossRefGoogle Scholar
  7. 7.
    T.J. Orchard, M. Temprosa, E. Barrett-Connor, S.E. Fowler, R.B. Goldberg, K.J. Mather, S.M. Marcovina, M. Montez, R.E. Ratner, C.D. Saudek, H. Sherif, K.E. Watson, Long-term effects of the diabetes prevention program interventions on cardiovascular risk factors: a report from the DPP outcomes study. Diabet. Med. 30(1), 46–55 (2013).  https://doi.org/10.1111/j.1464-5491.2012.03750.x CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    S.R. Salpeter, N.S. Buckley, J.A. Kahn, E.E. Salpeter, Meta-analysis: metformin treatment in persons at risk for diabetes mellitus. Am. J. Med. 121(2), 149–157.e142 (2008).  https://doi.org/10.1016/j.amjmed.2007.09.016 CrossRefPubMedGoogle Scholar
  9. 9.
    L. Zhou, H. Liu, X. Wen, Y. Peng, Y. Tian, L. Zhao, Effects of metformin on blood pressure in nondiabetic patients: a meta-analysis of randomized controlled trials. J. Hypertens. 35(1), 18–26 (2017).  https://doi.org/10.1097/HJH.0000000000001119 CrossRefPubMedGoogle Scholar
  10. 10.
    A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gotzsche, J.P. Ioannidis, M. Clarke, P.J. Devereaux, J. Kleijnen, D. Moher, The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J. Clin. Epidemiol. 62(10), e1–e34 (2009).  https://doi.org/10.1016/j.jclinepi.2009.06.006 CrossRefPubMedGoogle Scholar
  11. 11.
    S.P. Hozo, B. Djulbegovic, I. Hozo, Estimating the mean and variance from the median, range, and the size of a sample. BMC Med. Res. Methodol. 5, 13 (2005).  https://doi.org/10.1186/1471-2288-5-13 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    A. Fontbonne, M.A. Charles, I. Juhan-Vague, J.M. Bard, P. André, F. Isnard, J.M. Cohen, P. Grandmottet, P. Vague, M.E. Safar et al. The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care 19(9), 920–926 (1996).  https://doi.org/10.2337/diacare.19.9.920 CrossRefPubMedGoogle Scholar
  13. 13.
    C.L. Li, C.Y. Pan, J.M. Lu, Y. Zhu, J.H. Wang, X.X. Deng, F.C. Xia, H.Z. Wang, H.Y. Wang, Effect of metformin on patients with impaired glucose tolerance. Diabet. Med. 16(6), 477–481 (1999).  https://doi.org/10.1046/j.1464-5491.1999.00090.x CrossRefPubMedGoogle Scholar
  14. 14.
    P. Moghetti, R. Castello, C. Negri, F. Tosi, F. Perrone, M. Caputo, E. Zanolin, M. Muggeo, Metformin effects on clinical features, endocrine and metabolic profiles, and insulin sensitivity in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled 6-month trial, followed by open, long-term clinical evaluation. J. Clin. Endocrinol. Metab. 85(1), 139–146 (2000).  https://doi.org/10.1210/jcem.85.1.6293 CrossRefPubMedGoogle Scholar
  15. 15.
    M.A. Charles, E. Eschwège, P. Grandmottet, F. Isnard, J.M. Cohen, J.L. Bensoussan, H. Berche, O. Chapiro, P. André, P. Vague, et al., Treatment with metformin of non-diabetic men with hypertension, hypertriglyceridaemia and central fat distribution: the BIGPRO 1.2 trial. Diabetes Metab. Res. Rev. 16(1), 2–7 (2000).  https://doi.org/10.1002/(sici)1520-7560(200001/02)16:13.0.co;2-g CrossRefPubMedGoogle Scholar
  16. 16.
    M. Lehtovirta, B. Forsén, M. Gullström, M. Häggblom, J.G. Eriksson, M.R. Taskinen, L. Groop, Metabolic effects of metformin in patients with impaired glucose tolerance. Diabet. Med. 18(7), 578–583 (2001).  https://doi.org/10.1046/j.1464-5491.2001.00539.x CrossRefPubMedGoogle Scholar
  17. 17.
    C.J. Kelly, D. Gordon, The effect of metformin on hirsutism in polycystic ovary syndrome. Eur. J. Endocrinol. 147(2), 217–221 (2002).  https://doi.org/10.1530/eje.0.1470217 CrossRefPubMedGoogle Scholar
  18. 18.
    K.H. Chou, H. von Eye Corleta, E. Capp, P.M. Spritzer, Clinical, metabolic and endocrine parameters in response to metformin in obese women with polycystic ovary syndrome: a randomized, double-blind and placebo-controlled trial. Horm. Metab. Res. 35(2), 86–91 (2003).  https://doi.org/10.1055/s-2003-39056 CrossRefPubMedGoogle Scholar
  19. 19.
    G.A. Maciel, J.M. Soares Junior, E.L. Alves da Motta, M. Abi Haidar, G.R. de Lima, E.C. Baracat, Nonobese women with polycystic ovary syndrome respond better than obese women to treatment with metformin. Fertil. Steril. 81(2), 355–360 (2004).  https://doi.org/10.1016/j.fertnstert.2003.08.012 CrossRefPubMedGoogle Scholar
  20. 20.
    A. Gambineri, C. Pelusi, S. Genghini, A.M. Morselli-Labate, M. Cacciari, U. Pagotto, R. Pasquali, Effect of flutamide and metformin administered alone or in combination in dieting obese women with polycystic ovary syndrome. Clin. Endocrinol. 60(2), 241–249 (2004).  https://doi.org/10.1111/j.1365-2265.2004.01973.x CrossRefGoogle Scholar
  21. 21.
    A.E. Caballero, A. Delgado, C.A. Aguilar-Salinas, A.N. Herrera, J.L. Castillo, T. Cabrera, F.J. Gomez-Perez, J.A. Rull, The differential effects of metformin on markers of endothelial activation and inflammation in subjects with impaired glucose tolerance: a placebo-controlled, randomized clinical trial. J. Clin. Endocrinol. Metab. 89(8), 3943–3948 (2004).  https://doi.org/10.1210/jc.2004-0019 CrossRefPubMedGoogle Scholar
  22. 22.
    D.A. Stakos, D.P. Schuster, E.A. Sparks, C.F. Wooley, K. Osei, H. Boudoulas, Long term cardiovascular effects of oral antidiabetic agents in non-diabetic patients with insulin resistance: double blind, prospective, randomised study. Heart (Br. Card. Soc.) 91(5), 589–594 (2005).  https://doi.org/10.1136/hrt.2003.027722 CrossRefGoogle Scholar
  23. 23.
    T. Tang, J. Glanville, C.J. Hayden, D. White, J.H. Barth, A.H. Balen, Combined lifestyle modification and metformin in obese patients with polycystic ovary syndrome. A randomized, placebo-controlled, double-blind multicentre study. Hum. Reprod. (Oxf., Engl.) 21(1), 80–89 (2006).  https://doi.org/10.1093/humrep/dei311 CrossRefGoogle Scholar
  24. 24.
    J. Lord, R. Thomas, B. Fox, U. Acharya, T. Wilkin, The effect of metformin on fat distribution and the metabolic syndrome in women with polycystic ovary syndrome—a randomised, double-blind, placebo-controlled trial. BJOG 113(7), 817–824 (2006).  https://doi.org/10.1111/j.1471-0528.2006.00966.x CrossRefPubMedGoogle Scholar
  25. 25.
    C. Guimaraes, L.R. Pereira, N. Iucif Junior, E.J. Cesarino, C.A. de Almeida, D. de Carvalho, R.H. Queiroz, Tolerability and effectiveness of fluoxetine, metformin and sibutramine in reducing anthropometric and metabolic parameters in obese patients. Arq. Bras. Endocrinol. Metab. 50(6), 1020–1025 (2006).  https://doi.org/10.1590/s0004-27302006000600007 CrossRefGoogle Scholar
  26. 26.
    A. Gambineri, L. Patton, A. Vaccina, M. Cacciari, A.M. Morselli-Labate, C. Cavazza, U. Pagotto, R. Pasquali, Treatment with flutamide, metformin, and their combination added to a hypocaloric diet in overweight-obese women with polycystic ovary syndrome: a randomized, 12-month, placebo-controlled study. J. Clin. Endocrinol. Metab. 91(10), 3970–3980 (2006).  https://doi.org/10.1210/jc.2005-2250 CrossRefPubMedGoogle Scholar
  27. 27.
    T. Baptista, J. Martínez, A. Lacruz, N. Rangel, S. Beaulieu, A. Serrano, Y. Arapé, M. Martinez, S. De Mendoza, L. Teneud, L. Hernández, Metformin for prevention of weight gain and insulin resistance with olanzapine: a double-blind placebo-controlled trial. Can. J. Psychiatry 51(3), 192–196 (2006).  https://doi.org/10.1177/070674370605100310 CrossRefPubMedGoogle Scholar
  28. 28.
    B. Trolle, A. Flyvbjerg, U. Kesmodel, F.F. Lauszus, Efficacy of metformin in obese and non-obese women with polycystic ovary syndrome: a randomized, double-blinded, placebo-controlled cross-over trial. Hum. Reprod. 22(11), 2967–2973 (2007).  https://doi.org/10.1093/humrep/dem271 CrossRefPubMedGoogle Scholar
  29. 29.
    S. Palomba, A. Falbo, T. Russo, F. Manguso, A. Tolino, F. Zullo, P. De Feo, F. Orio, Insulin sensitivity after metformin suspension in normal-weight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 92(8), 3128–3135 (2007).  https://doi.org/10.1210/jc.2007-0441 CrossRefPubMedGoogle Scholar
  30. 30.
    L.G. Kraemer de Aguiar, C.M. Laflor, L. Bahia, N.R. Villela, N. Wiernsperger, D.A. Bottino, E. Bouskela, Metformin improves skin capillary reactivity in normoglycaemic subjects with the metabolic syndrome. Diabet. Med. 24(3), 272–279 (2007).  https://doi.org/10.1111/j.1464-5491.2007.02082.x CrossRefPubMedGoogle Scholar
  31. 31.
    M.A. Karimzadeh, M. Eftekhar, R. Taheripanah, N. Tayebi, L. Sakhavat, F. Zare, The effect of administration of metformin on lipid profile changes and insulin resistance in patients with polycystic ovary syndrome. Middle East Fertil. Soc. J. 12(3), 174–178 (2007)Google Scholar
  32. 32.
    T. Baptista, N. Rangel, V. Fernández, E. Carrizo, Y. El Fakih, E. Uzcátegui, T. Galeazzi, M.A. Gutiérrez, M. Servigna, A. Dávila, et al., Metformin as an adjunctive treatment to control body weight and metabolic dysfunction during olanzapine administration: a multicentric, double-blind, placebo-controlled trial. Schizophrenia Res. 93(1–3), 99–108 (2007).  https://doi.org/10.1016/j.schres.2007.03.029 CrossRefGoogle Scholar
  33. 33.
    A. Fontbonne, I. Diouf, M. Baccara-Dinet, E. Eschwege, M.A. Charles, Effects of 1-year treatment with metformin on metabolic and cardiovascular risk factors in non-diabetic upper-body obese subjects with mild glucose anomalies: a post-hoc analysis of the BIGPRO1 trial. Diabetes Metab. 35(5), 385–391 (2009).  https://doi.org/10.1016/j.diabet.2009.03.005 CrossRefPubMedGoogle Scholar
  34. 34.
    D. Romualdi, M. Giuliani, F. Cristello, A.M. Fulghesu, L. Selvaggi, A. Lanzone, M. Guido, Metformin effects on ovarian ultrasound appearance and steroidogenic function in normal-weight normoinsulinemic women with polycystic ovary syndrome: a randomized double-blind placebo-controlled clinical trial. Fertil. Steril. 93(7), 2303–2310 (2010).  https://doi.org/10.1016/j.fertnstert.2009.01.114 CrossRefPubMedGoogle Scholar
  35. 35.
    C.F. Otta, M. Wior, G.S. Iraci, R. Kaplan, D. Torres, M.I. Gaido, E.P. Wyse, Clinical, metabolic, and endocrine parameters in response to metformin and lifestyle intervention in women with polycystic ovary syndrome: a randomized, double-blind, and placebo control trial. Gynecol. Endocrinol. 26(3), 173–178 (2010).  https://doi.org/10.3109/09513590903215581 CrossRefGoogle Scholar
  36. 36.
    S.S. Lim, R.J. Norman, P.M. Clifton, M. Noakes, The effect of comprehensive lifestyle intervention or metformin on obesity in young women. Nutr. Metab. Cardiovasc Dis. 21(4), 261–268 (2011).  https://doi.org/10.1016/j.numecd.2009.10.006 CrossRefPubMedGoogle Scholar
  37. 37.
    G. Ladson, W.C. Dodson, S.D. Sweet, A.E. Archibong, A.R. Kunselman, L.M. Demers, N.I. Williams, P. Coney, R.S. Legro, The effects of metformin with lifestyle therapy in polycystic ovary syndrome: A randomized double-blind study. Fertil. Steril. 95(3), 1059–1066.e1057 (2011).  https://doi.org/10.1016/j.fertnstert.2010.12.002 CrossRefPubMedGoogle Scholar
  38. 38.
    W. Wei, H. Zhao, A. Wang, M. Sui, K. Liang, H. Deng, Y. Ma, Y. Zhang, H. Zhang, Y. Guan, A clinical study on the short-term effect of berberine in comparison to metformin on the metabolic characteristics of women with polycystic ovary syndrome. Eur. J. Endocrinol. 166(1), 99–105 (2012).  https://doi.org/10.1530/EJE-11-0616 CrossRefPubMedGoogle Scholar
  39. 39.
    R. Krysiak, B. Okopien, The effect of metformin on monocyte secretory function in simvastatin-treated patients with impaired fasting glucose. Metab.: Clin. Exp. 62(1), 39–43 (2013).  https://doi.org/10.1016/j.metabol.2012.06.009 CrossRefGoogle Scholar
  40. 40.
    S.K. Malin, J. Nightingale, S.E. Choi, S.R. Chipkin, B. Braun, Metformin modifies the exercise training effects on risk factors for cardiovascular disease in impaired glucose tolerant adults. Obes. (Silver spring, md.) 21(1), 93–100 (2013).  https://doi.org/10.1002/oby.20235 CrossRefGoogle Scholar
  41. 41.
    L.F. Jarskog, R.M. Hamer, D.J. Catellier, D.D. Stewart, L. Lavange, N. Ray, L.H. Golden, J.A. Lieberman, T.S. Stroup, Metformin for weight loss and metabolic control in overweight outpatients with schizophrenia and schizoaffective disorder. Am. J. Psychiatry 170(9), 1032–1040 (2013).  https://doi.org/10.1176/appi.ajp.2013.12010127 CrossRefPubMedGoogle Scholar
  42. 42.
    C.H. Chen, M.C. Huang, C.F. Kao, S.K. Lin, P.H. Kuo, C.C. Chiu, M.L. Lu, Effects of adjunctive metformin on metabolic traits in nondiabetic clozapine-treated patients with schizophrenia and the effect of metformin discontinuation on body weight: a 24-week, randomized, double-blind, placebo-controlled study. J. Clin. Psychiatry 74(5), e424–e430 (2013).  https://doi.org/10.4088/JCP.12m08186 CrossRefPubMedGoogle Scholar
  43. 43.
    Y. An, Z. Sun, Y. Zhang, B. Liu, Y. Guan, M. Lu, The use of berberine for women with polycystic ovary syndrome undergoing IVF treatment. Clin. Endocrinol. 80(3), 425–431 (2013).  https://doi.org/10.1111/cen.12294 CrossRefGoogle Scholar
  44. 44.
    R. Worsley, F. Jane, P.J. Robinson, R.J. Bell, S.R. Davis, Metformin for overweight women at midlife: a double-blind, randomized, controlled trial. Climacteric 18(2), 270–277 (2015).  https://doi.org/10.3109/13697137.2014.954997 CrossRefPubMedGoogle Scholar
  45. 45.
    D. Preiss, S.M. Lloyd, I. Ford, J.J. McMurray, R.R. Holman, P. Welsh, M. Fisher, C.J. Packard, N. Sattar, Metformin for non-diabetic patients with coronary heart disease (the CAMERA study): a randomised controlled trial. The lancet. Diabetes Endocrinol. 2(2), 116–124 (2014).  https://doi.org/10.1016/S2213-8587(13)70152-9 CrossRefGoogle Scholar
  46. 46.
    H.R. Mogul, R. Freeman, K. Nguyen, M. Frey, L.A. Klein, S. Jozak, K. Tanenbaum, Carbohydrate modified diet & insulin sensitizers reduce body weight & modulate metabolic syndrome measures in EMPOWIR (enhance the metabolic profile of women with insulin resistance): a randomized trial of normoglycemic women with midlife weight gain. PLoS ONE 9(9), e108264 (2014).  https://doi.org/10.1371/journal.pone.0108264 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    M. Amiri, M. Golsorkhtabaramiri, S. Esmaeilzadeh, F. Ghofrani, A. Bijani, L. Ghorbani, M.A. Delavar, Effect of metformin and flutamide on anthropometric indices and laboratory tests in obese/overweight PCOS women under hypocaloric diet. J. Reprod. Infertil. 15(4), 205–213 (2014)PubMedPubMedCentralGoogle Scholar
  48. 48.
    W. Xu, Y.Y. Deng, L. Yang, S. Zhao, J. Liu, Z. Zhao, L. Wang, P. Maharjan, S. Gao, Y. Tian, X. Zhuo, Y. Zhao, J. Zhou, Z. Yuan, Y. Wu, Metformin ameliorates the proinflammatory state in patients with carotid artery atherosclerosis through sirtuin 1 induction. Transl. Res. 166(5), 451–458 (2015).  https://doi.org/10.1016/j.trsl.2015.06.002 CrossRefPubMedGoogle Scholar
  49. 49.
    C.P.H. Lexis, A.N.A van der Horst-Schrivers, E. Lipsic, M.A.E. Valente, A.C.M. Kobold, R.A. de Boer, D.J. van Veldhuisen, P. van der Harst, I.C.C. van der Horst et al. The effect of metformin on cardiovascular risk profile in patients without diabetes presenting with acute myocardial infarction: data from the Glycometabolic Intervention as adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction (GIPS-III) trial. BMJ Open Diabetes Res Care 3(1), (2015).  https://doi.org/10.1136/bmjdrc-2015-000090 CrossRefGoogle Scholar
  50. 50.
    P. Hebrani, A.A. Manteghi, F. Behdani, E. Hessami, K.A. Rezayat, M.N. Marvast, A.A. Rezayat, Double-blind, randomized, clinical trial of metformin as add-on treatment with clozapine in treatment of schizophrenia disorder. J. Res. Med. Sci. 20(4), 364–371 (2015)PubMedPubMedCentralGoogle Scholar
  51. 51.
    G. Ghazeeri, H.A. Abbas, B. Skaff, S. Harajly, J. Awwad, Inadequacy of initiating rosuvastatin then metformin on biochemical profile of polycystic ovarian syndrome patients. J. Endocrinol. Investig. 38(6), 643–651 (2015).  https://doi.org/10.1007/s40618-015-0237-3 CrossRefGoogle Scholar
  52. 52.
    R.R. Wu, F.Y. Zhang, K.M. Gao, J.J. Ou, P. Shao, H. Jin, W.B. Guo, P.K. Chan, J.P. Zhao, Metformin treatment of antipsychotic-induced dyslipidemia: an analysis of two randomized, placebo-controlled trials. Mol. Psychiatry 21(11), 1537–1544 (2016).  https://doi.org/10.1038/mp.2015.221 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    S. Singh, A. Bhansali, Randomized placebo control study of insulin sensitizers (Metformin and Pioglitazone) in psoriasis patients with metabolic syndrome (Topical Treatment Cohort). BMC Dermatol. 16(1), 12 (2016).  https://doi.org/10.1186/s12895-016-0049-y CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    S.J. Griffin, M. Angelyn Bethel, R.R. Holman, K. Khunti, N. Wareham, G. Brierley, M. Davies, A. Dymond, R. Eichenberger, P. Evans et al. Metformin in non-diabetic hyperglycaemia: the glint feasibility RCT. Health technology assessment 22(18) (2018).  https://doi.org/10.3310/hta22180 CrossRefGoogle Scholar
  55. 55.
    M. Dornelles Severo, T. Stürmer Andrade, V. Correa Junior, A. Antonio Naujorks, M. Gus, B.D. Schaan, Metformin effect on TSH in subclinical hypothyroidism: randomized, double-blind, placebo-controlled clinical trial. Endocrine 59(1), 66–71 (2018).  https://doi.org/10.1007/s12020-017-1462-7 CrossRefPubMedGoogle Scholar
  56. 56.
    M. Zang, A. Zuccollo, X. Hou, D. Nagata, K. Walsh, H. Herscovitz, P. Brecher, N.B. Ruderman, R.A. Cohen, AMP-activated protein kinase is required for the lipid-lowering effect of metformin in insulin-resistant human HepG2 cells. J. Biol. Chem. 279(46), 47898–47905 (2004).  https://doi.org/10.1074/jbc.M408149200 CrossRefPubMedGoogle Scholar
  57. 57.
    Y. Li, S. Xu, M.M. Mihaylova, B. Zheng, X. Hou, B. Jiang, O. Park, Z. Luo, E. Lefai, J.Y. Shyy, B. Gao, M. Wierzbicki, T.J. Verbeuren, R.J. Shaw, R.A. Cohen, M. Zang, AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice. Cell Metab. 13(4), 376–388 (2011).  https://doi.org/10.1016/j.cmet.2011.03.009 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    G. Zhou, R. Myers, Y. Li, Y. Chen, X. Shen, J. Fenyk-Melody, M. Wu, J. Ventre, T. Doebber, N. Fujii, N. Musi, M.F. Hirshman, L.J. Goodyear, D.E. Moller, Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 108(8), 1167–1174 (2001).  https://doi.org/10.1172/jci13505 CrossRefPubMedGoogle Scholar
  59. 59.
    S.K. Malin, S.R. Kashyap, Effects of metformin on weight loss: potential mechanisms. Curr. Opin. Endocrinol. Diabetes Obes. 21(5), 323–329 (2014).  https://doi.org/10.1097/med.0000000000000095 CrossRefPubMedGoogle Scholar
  60. 60.
    M.H. Hallak, M.Z. Nomani, Body weight loss and changes in blood lipid levels in normal men on hypocaloric diets during Ramadan fasting. Am. J. Clin. Nutr. 48(5), 1197–1210 (1988).  https://doi.org/10.1093/ajcn/48.5.1197 CrossRefPubMedGoogle Scholar
  61. 61.
    A. Wang, T. Mo, Q. Li, C. Shen, M. Liu, The effectiveness of metformin, oral contraceptives, and lifestyle modification in improving the metabolism of overweight women with polycystic ovary syndrome: a network meta-analysis. Endocrine 64(2), 220–232 (2019).  https://doi.org/10.1007/s12020-019-01860-w CrossRefPubMedGoogle Scholar
  62. 62.
    D.F. Vine, Y. Wang, M.M. Jetha, G.D. Ball, S.D. Proctor, Impaired ApoB-lipoprotein and triglyceride metabolism in obese adolescents with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 102(3), 970–982 (2017).  https://doi.org/10.1210/jc.2016-2854 CrossRefPubMedGoogle Scholar
  63. 63.
    R. Patel, G. Shah, Effect of metformin on clinical, metabolic and endocrine outcomes in women with polycystic ovary syndrome: a meta-analysis of randomized controlled trials. Curr. Med. Res. Opin. 33(9), 1545–1557 (2017).  https://doi.org/10.1080/03007995.2017.1279597 CrossRefPubMedGoogle Scholar
  64. 64.
    Diabetes Prevention Program Research Group, Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 3(11), 866–875 (2015).  https://doi.org/10.1016/s2213-8587(15)00291-0
  65. 65.
    W.H. Herman, The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention: an intent-to-treat analysis of the DPP/DPPOS. Diabetes Care 35(4), 723–730 (2012).  https://doi.org/10.2337/dc11-1468
  66. 66.
    B. Mihaylova, J. Emberson, L. Blackwell, A. Keech, J. Simes, E.H. Barnes, M. Voysey, A. Gray, R. Collins, C. Baigent, The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: meta-analysis of individual data from 27 randomised trials. Lancet 380(9841), 581–590 (2012).  https://doi.org/10.1016/s0140-6736(12)60367-5 CrossRefPubMedGoogle Scholar
  67. 67.
    M. Solymar, I. Ivic, L. Poto, P. Hegyi, A. Garami, P. Hartmann, E. Petervari, L. Czopf, A. Hussain, Z. Gyongyi, P. Sarlos, M. Simon, P. Matrai, B. Berczi, M. Balasko, Metformin induces significant reduction of body weight, total cholesterol and LDL levels in the elderly—a meta-analysis. PLoS ONE 13(11), e0207947 (2018).  https://doi.org/10.1371/journal.pone.0207947 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    J.A. Kiayias, E.D. Vlachou, E.L. Papadodima, Metformin and lipoprotein(a) levels. Diabetes Care 22(5), 859 (1999).  https://doi.org/10.2337/diacare.22.5.859b CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Cardiovascular Medicine, The Second Xiangya HospitalCentral South UniversityChangshaChina

Personalised recommendations