pp 1–10 | Cite as

Elevated triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio increased risk of hyperuricemia: a 4-year cohort study in China

  • Xin-Yao Liu
  • Qiao-Yu Wu
  • Zhi-Heng Chen
  • Guang-Yu Yan
  • Yao Lu
  • Hai-Jiang Dai
  • Ying Li
  • Ping-Ting Yang
  • Hong YuanEmail author
Original Article



Previous studies revealed that high serum uric acid (SUA) levels correlated with increased triglyceride to high-density lipoprotein cholesterol (TG/HDL-C) ratio. However, evidence is lacking regarding whether TG/HDL-C is an independent risk factor or just a simple marker of hyperuricemia. We aimed to investigate the relationship between TG/HDL-C and the risk of hyperuricemia in Chinese population.


This retrospective cohort study involved 15,198 subjects (43.14 ± 13.13 years, 54.9% men) who were free of hyperuricemia at baseline. The association between TG/HDL-C and the risk of hyperuricemia, in the total sample and stratified by subgroups, was examined by multiple logistic regression analyses.


During 4 years follow-up, hyperuricemia occurred in 2365 (15.6%) participants. The cumulative incidence of hyperuricemia was significantly elevated with increasing TG/HDL-C quartiles (5.9, 10.8, 18.4, and 27.5%, respectively). After multivariate adjustment, the odds ratio for hyperuricemia in the highest compared with the lowest quartile of TG/HDL-C was 1.80 (95% confidence interval [CI] 1.49, 2.18), and each SD increment of TG/HDL-C ratio caused a 10% additional risk for hyperuricemia. Moreover, subgroup analyses showed that the association between TG/HDL-C and the risk of hyperuricemia was more pronounced in women and normal-weight adults. The results were consistent when analyses were restricted to participants without metabolic syndrome.


TG/HDL-C ratio was positively related to the risk of hyperuricemia in Chinese population, particularly in women and normal-weight individuals. These findings suggested the potential of TG/HDL-C ratio to serve as an independent risk indicator in the prevention of hyperuricemia.


Hyperuricemia Triglyceride High-density lipoprotein cholesterol Insulin resistance 



We gratefully acknowledge all the participants in this study along with the clinical staff of the Third Xiangya Hospital for their assistance in collecting and examining the biochemical samples.


This study was funded by the National Key Technology Research and Development Program (No. 2016YFC0900802), and the Postgraduate Innovation Project of Central South University (No. 2014zzts089).

Author contributions

All authors were responsible for drafting the manuscript and revising it critically for constructive intellectual content. All authors approved the version to be published.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consents were obtained from all individual participants included in the study.

Supplementary material

12020_2019_2176_MOESM1_ESM.pdf (197 kb)
Supplementary Information


  1. 1.
    T. Bardin, P. Richette, Impact of comorbidities on gout and hyperuricaemia: an update on prevalence and treatment options. BMC Med. 15(1), 123 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    A.U.A. Kumar, L.D. Browne, X. Li, F. Adeeb, F. Perez-Ruiz, A.D. Fraser, A.G. Stack, Temporal trends in hyperuricaemia in the Irish health system from 2006-2014: a cohort study. PLoS ONE 13(5), e0198197 (2018)CrossRefGoogle Scholar
  3. 3.
    M. Chen-Xu, C. Yokose, S.K. Rai, M.H. Pillinger, H.K. Choi, Contemporary prevalence of gout and hyperuricemia in the United States and decadal trends: the national health and nutrition examination survey, 2007–2016. Arthritis Rheumatol. 71(6), 991–999 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    R. Liu, C. Han, D. Wu, X. Xia, J. Gu, H. Guan, Z. Shan, W. Teng, Prevalence of hyperuricemia and gout in mainland China from 2000 to 2014: a systematic review and meta-analysis. BioMed. Res. Int. 2015, 762820 (2015)PubMedPubMedCentralGoogle Scholar
  5. 5.
    Z. Miao, C. Li, Y. Chen, S. Zhao, Y. Wang, Z. Wang, X. Chen, F. Xu, F. Wang, R. Sun, J. Hu, W. Song, S. Yan, C.Y. Wang, Dietary and lifestyle changes associated with high prevalence of hyperuricemia and gout in the Shandong coastal cities of Eastern China. J. Rheumatol. 35(9), 1859–1864 (2008)PubMedPubMedCentralGoogle Scholar
  6. 6.
    J.A. Singh, S.G. Reddy, J. Kundukulam, Risk factors for gout and prevention: a systematic review of the literature. Curr. Opin. Rheumatol. 23(2), 192–202 (2011)PubMedPubMedCentralGoogle Scholar
  7. 7.
    H. Wang, H. Zhang, L. Sun, W. Guo, Roles of hyperuricemia in metabolic syndrome and cardiac-kidney-vascular system diseases. Am. J. Transl. Res. 10(9), 2749–2763 (2018)PubMedPubMedCentralGoogle Scholar
  8. 8.
    T. Wang, Y. Bi, M. Xu, Y. Huang, Y. Xu, X. Li, W. Wang, G. Ning, Serum uric acid associates with the incidence of type 2 diabetes in a prospective cohort of middle-aged and elderly Chinese. Endocrine 40(1), 109–116 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    K. Wijarnpreecha, P. Panjawatanan, N. Lekuthai, C. Thongprayoon, W. Cheungpasitporn, P. Ungprasert, Hyperuricaemia and risk of nonalcoholic fatty liver disease: a meta-analysis. Liver Int 37(6), 906–918 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Y. Xie, P. Xu, K. Liu, S. Lin, M. Wang, T. Tian, C. Dai, Y. Deng, N. Li, Q. Hao, L. Zhou, Z. Dai, Hyperuricemia and gout are associated with cancer incidence and mortality: a meta-analysis based on cohort studies. J. Cell. Physiol. 234(8), 14364–14376 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    T.C. Peng, C.C. Wang, T.W. Kao, J.Y. Chan, Y.H. Yang, Y.W. Chang, W.L. Chen, Relationship between hyperuricemia and lipid profiles in US adults. BioMed. Res. Int. 2015, 127596 (2015)PubMedPubMedCentralGoogle Scholar
  12. 12.
    T. Keenan, M.J. Blaha, K. Nasir, M.G. Silverman, R. Tota-Maharaj, J.A. Carvalho, R.D. Conceicao, R.S. Blumenthal, R.D. Santos, Relation of uric acid to serum levels of high-sensitivity C-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis. Am. J. Cardiol. 110(12), 1787–1792 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    M.J. Stelmach, N. Wasilewska, L.I. Wicklund-Liland, A. Wasilewska, Blood lipid profile and BMI-Z-score in adolescents with hyperuricemia. Ir. J. Med. Sci. 184(2), 463–468 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    J. Vekic, Z. Jelic-Ivanovic, V. Spasojevic-Kalimanovska, L. Memon, A. Zeljkovic, N. Bogavac-Stanojevic, S. Spasic, High serum uric acid and low-grade inflammation are associated with smaller LDL and HDL particles. Atherosclerosis 203(1), 236–242 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    G.M. Reaven, The kidney: an unwilling accomplice in syndrome X. Am. J. Kidney Dis. 30(6), 928–931 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    E. Bonora, B. Capaldo, P.C. Perin, S. Del Prato, G. De Mattia, L. Frittitta, S. Frontoni, F. Leonetti, L. Luzi, G. Marchesini, M.A. Marini, A. Natali, G. Paolisso, P.M. Piatti, A. Pujia, A. Solini, R. Vettor, R.C. Bonadonna, Hyperinsulinemia and insulin resistance are independently associated with plasma lipids, uric acid and blood pressure in non-diabetic subjects. The GISIR database. Nutr. Metab. Cardiovasc. Dis. 18(9), 624–631 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    M.Dobiasova, J.Frohlich, The plasma parameter log (TG/HDL-C) as an atherogenic index: correlation with lipoprotein particle size and esterification rate in apoB-lipoprotein-depleted plasma (FER(HDL). Clin. Biochem. 34(7), 583–588 (2001)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    D. Lin, Y. Qi, C. Huang, M. Wu, C. Wang, F. Li, C. Yang, L. Yan, M. Ren, K. Sun, Associations of lipid parameters with insulin resistance and diabetes: a population-based study. Clin. Nutr. 37(4), 1423–1429 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    B.T. Palmisano, L. Zhu, J.M. Stafford, Role of estrogens in the regulation of liver lipid metabolism. Adv. Exp. Med. Biol. 1043, 227–256 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    H. Dai, W. Wang, R. Chen, Z. Chen, Y. Lu, H. Yuan, Lipid accumulation product is a powerful tool to predict non-alcoholic fatty liver disease in Chinese adults. Nutr. Metab. 14, 49 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Dai, W. Wang, X. Tang, R. Chen, Z. Chen, Y. Lu, H. Yuan, Association between homocysteine and non-alcoholic fatty liver disease in Chinese adults: a cross-sectional study. Nutr. J. 15(1), 102 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Y. Lu, M. Lu, H. Dai, P. Yang, J. Smith-Gagen, R. Miao, H. Zhong, R. Chen, X. Liu, Z. Huang, H. Yuan, Lifestyle and risk of hypertension: follow-up of a young pre-hypertensive cohort. Int. J. Med. Sci. 12(7), 605–612 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Y.C. Ma, L. Zuo, J.H. Chen, Q. Luo, X.Q. Yu, Y. Li, J.S. Xu, S.M. Huang, L.N. Wang, W. Huang, M. Wang, G.B. Xu, H.Y. Wang, Modified glomerular filtration rate estimating equation for Chinese patients with chronic kidney disease. J. Am. Soc. Nephrol. 17(10), 2937–2944 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    World Health Orgnization, Physical status: the use and interpretation of ant hropometry. Report of a WHO Expert Committee. World Health Organ. Technical Report Series no. 854, 1–452 (1995)Google Scholar
  25. 25.
    C. Lenfant, A.V. Chobanian, D.W. Jones, E.J. Roccella, Seventh report of the joint national committee on the prevention, detection, evaluation, and treatment of high blood pressure (JNC 7): resetting the hypertension sails. Hypertension 41(6), 1178–1179 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    P.H. Marathe, H.X. Gao, K.L. Close, American diabetes association standards of medical care in diabetes 2017. J. Diabetes 9(4), 320–324 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr., Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    T. Bardin, Hyperuricemia starts at 360 micromoles (6 mg/dL). Jt. Bone Spine 82(3), 141–143 (2015)CrossRefGoogle Scholar
  29. 29.
    G. Desideri, G. Castaldo, A. Lombardi, M. Mussap, A. Testa, R. Pontremoli, L. Punzi, C. Borghi, Is it time to revise the normal range of serum uric acid levels? Eur. Rev. Med. Pharm. Sci. 18(9), 1295–1306 (2014)Google Scholar
  30. 30.
    Y. Zhang, F. Wei, C. Chen, C. Cai, K. Zhang, N. Sun, J. Tian, W. Shi, M. Zhang, Y. Zang, J. Song, Y. He, J. Feng, Q. Zhou, M. Li, P. Bai, S. Feng, W.D. Li, Higher triglyceride level predicts hyperuricemia: a prospective study of 6-year follow-up. J. Clin. Lipidol. 12(1), 185–192 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    A.S. Bomback, V.K. Derebail, D.A. Shoham, C.A. Anderson, L.M. Steffen, W.D. Rosamond, A.V. Kshirsagar, Sugar-sweetened soda consumption, hyperuricemia, and kidney disease. Kidney Int. 77(7), 609–616 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Q.W. Deng, S. Li, H. Wang, L. Lei, H.Q. Zhang, Z.T. Gu, F.L. Xing, F.L. Yan, The short-term prognostic value of the triglyceride-to-high-density lipoprotein cholesterol ratio in acute ischemic stroke. Aging Dis. 9(3), 498–506 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Y.L. Wang, W.P. Koh, M. Talaei, J.M. Yuan, A. Pan, Association between the ratio of triglyceride to high-density lipoprotein cholesterol and incident type 2 diabetes in Singapore Chinese men and women. J. Diabetes 9(7), 689–698 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    C.I. Ho, J.Y. Chen, S.Y. Chen, Y.W. Tsai, Y.M. Weng, Y.C. Tsao, W.C. Li, Relationship between TG/HDL-C ratio and metabolic syndrome risk factors with chronic kidney disease in healthy adult population. Clin. Nutr. 34(5), 874–880 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Y. Fukuda, Y. Hashimoto, M. Hamaguchi, T. Fukuda, N. Nakamura, A. Ohbora, T. Kato, T. Kojima, M. Fukui, Triglycerides to high-density lipoprotein cholesterol ratio is an independent predictor of incident fatty liver: a population-based cohort study. Liver Int. 36(5), 713–720 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    D.Ozalp Kizilay, S. Sen, B. Ersoy, Associations between serum uric acid concentrations and cardiometabolic risk and renal injury in obese and overweight children. J. Clin. Res Pediatr. Endocrinol. 11(3), 262–269 (2019)CrossRefGoogle Scholar
  37. 37.
    K. Chaudhary, K. Malhotra, J. Sowers, A. Aroor, Uric acid - key ingredient in the recipe for cardiorenal metabolic syndrome. Cardiorenal Med. 3(3), 208–220 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    S.P. Juraschek, L.C. Kovell, E.R. Miller, A.C. Gelber, Dose-response association of uncontrolled blood pressure and cardiovascular disease risk factors with hyperuricemia and gout. PLoS ONE 8(2), e56546 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    F. Matsuura, S. Yamashita, T. Nakamura, M. Nishida, S. Nozaki, T. Funahashi, Y. Matsuzawa, Effect of visceral fat accumulation on uric acid metabolism in male obese subjects: visceral fat obesity is linked more closely to overproduction of uric acid than subcutaneous fat obesity. Metabolism 47(8), 929–933 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    T. Balasubramanian, Uric acid or 1-methyl uric acid in the urinary bladder increases serum glucose, insulin, true triglyceride, and total cholesterol levels in Wistar rats. TheScientificWorldJournal 3, 930–936 (2003)PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    K. Kawachi, H. Kataoka, S. Manabe, T. Mochizuki, K. Nitta, Low HDL cholesterol as a predictor of chronic kidney disease progression: a cross-classification approach and matched cohort analysis. Heart Vessels 34(9), 1440–1455 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    F. Wang, J. Zheng, P. Ye, L. Luo, Y. Bai, R. Xu, L. Sheng, T. Xiao, H. Wu, Association of high-density lipoprotein cholesterol with the estimated glomerular filtration rate in a community-based population. PLoS ONE 8(11), e79738 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    A.F. Wright, I. Rudan, N.D. Hastie, H. Campbell, A ‘complexity’ of urate transporters. Kidney Int. 78(5), 446–452 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    A. Enomoto, H. Kimura, A. Chairoungdua, Y. Shigeta, P. Jutabha, S.H. Cha, M. Hosoyamada, M. Takeda, T. Sekine, T. Igarashi, H. Matsuo, Y. Kikuchi, T. Oda, K. Ichida, T. Hosoya, K. Shimokata, T. Niwa, Y. Kanai, H. Endou, Molecular identification of a renal urate anion exchanger that regulates blood urate levels. Nature 417(6887), 447–452 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    E. Muscelli, A. Natali, S. Bianchi, R. Bigazzi, A.Q. Galvan, A.M. Sironi, S. Frascerra, D. Ciociaro, E. Ferrannini, Effect of insulin on renal sodium and uric acid handling in essential hypertension. Am. J. Hypertension 9(8), 746–752 (1996)CrossRefGoogle Scholar
  46. 46.
    F. Perez-Ruiz, M.A. Aniel-Quiroga, A.M. Herrero-Beites, S.P. Chinchilla, G.G. Erauskin, T. Merriman, Renal clearance of uric acid is linked to insulin resistance and lower excretion of sodium in gout patients. Rheumatol. Int. 35(9), 1519–1524 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    P. Bjornstad, R.H. Eckel, Pathogenesis of lipid disorders in insulin resistance: a brief review. Curr. Diabetes Rep. 18(12), 127 (2018)CrossRefGoogle Scholar
  48. 48.
    Y. Kim, J. Kang, G.T. Kim, Prevalence of hyperuricemia and its associated factors in the general Korean population: an analysis of a population-based nationally representative sample. Clin. Rheumatol. 37(9), 2529–2538 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    G.E. Thottam, S. Krasnokutsky, M.H. Pillinger, Gout and metabolic syndrome: a tangled web. Curr. Rheumatol. Rep. 19(10), 60 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    G. Derosa, P. Maffioli, Ž. Reiner, L.E. Simental-Mendía, A. Sahebkar, Impact of statin therapy on plasma uric acid concentrations: a systematic review and meta-analysis. Drugs 76(9), 947–956 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    G. Derosa, P. Maffioli, A. Sahebkar, Plasma uric acid concentrations are reduced by fenofibrate: a systematic review and meta-analysis of randomized placebo-controlled trials. Pharmacol. Res. 102, 63–70 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    S. Tsunoda, K. Kamide, J. Minami, Y. Kawano, Decreases in serum uric acid by amelioration of insulin resistance in overweight hypertensive patients: effect of a low-energy diet and an insulin-sensitizing agent. Am. J. Hypertens. 15(8), 697–701 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    D.N. Kiortsis, T.D. Filippatos, M.S. Elisaf, The effects of orlistat on metabolic parameters and other cardiovascular risk factors. Diabetes Metab. 31(1), 15–22 (2005)PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    A. Kottgen, E. Albrecht, A. Teumer, V. Vitart, J. Krumsiek, C. Hundertmark, G. Pistis, D. Ruggiero, C.M. O’Seaghdha, T. Haller, Q. Yang, T. Tanaka, A.D. Johnson, Z. Kutalik, A.V. Smith, J. Shi et al. Genome-wide association analyses identify 18 new loci associated with serum urate concentrations. Nat. Genet. 45(2), 145–154 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    A. Bedir, M. Topbas, F. Tanyeri, M. Alvur, N. Arik, Leptin might be a regulator of serum uric acid concentrations in humans. Jpn. Heart J. 44(4), 527–536 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    D. Gasevic, J. Frohlich, G.B. Mancini, S.A. Lear, The association between triglyceride to high-density-lipoprotein cholesterol ratio and insulin resistance in a multiethnic primary prevention cohort. Metabolism. 61(4), 583–589 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    T. Du, G. Yuan, M. Zhang, X. Zhou, X. Sun, X. Yu, Clinical usefulness of lipid ratios, visceral adiposity indicators, and the triglycerides and glucose index as risk markers of insulin resistance. Cardiovasc. Diabetol. 13, 146 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    S.S. Yu, D.C. Castillo, A.B. Courville, A.E. Sumner, The triglyceride paradox in people of African descent. Metab. Syndr. Relat. Disord. 10(2), 77–82 (2012)PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.Department of Cardiology, The Third Xiangya HospitalCentral South UniversityChangshaPR China
  2. 2.Department of Health Examination Center, The Third Xiangya HospitalCentral South UniversityChangshaPR China
  3. 3.Key Laboratory of Medical Information ResearchCentral South UniversityChangshaPR China
  4. 4.Center of Clinical Pharmacology, The Third Xiangya HospitalCentral South UniversityChangshaPR China

Personalised recommendations