Advertisement

Low prolactin levels are associated with visceral adipocyte hypertrophy and insulin resistance in humans

Abstract

Purpose

Low prolactin (PRL) serum levels are associated with glucose intolerance and type 2 diabetes in adults, and with metabolic syndrome and obesity in children. In obese rodents, PRL treatment promotes insulin sensitivity by maintaining adipose tissue fitness, and lack of PRL signaling exacerbates obesity-derived metabolic alterations. Since adipose tissue dysfunction is a key factor triggering metabolic alterations, we evaluated whether PRL serum levels are associated with adipocyte hypertrophy (a marker of adipose tissue dysfunction), insulin resistance, and metabolic syndrome in lean, overweight, and obese adult men and women.

Methods

Samples of serum and adipose tissue from 40 subjects were obtained to evaluate insulin resistance index (homeostasis model assessment of insulin resistance (HOMA-IR)), signs of metabolic syndrome (glucose levels, high-density lipoproteins, triglycerides, blood pressure, and waist circumference), as well as adipocyte size and gene expression in fat.

Results

Lower PRL serum levels are associated with adipocyte hypertrophy, in visceral but not in subcutaneous fat, and with a higher HOMA-IR. Furthermore, low systemic PRL levels together with high waist circumference predict an elevated HOMA-IR whereas low serum PRL values in combination with high blood glucose predicts visceral adipocyte hypertrophy. In agreement, visceral fat from insulin resistant subjects shows reduced expression of prolactin receptor. However, there is no association between PRL levels and obesity or signs of metabolic syndrome.

Conclusions

Our results support that low levels of PRL are markers of visceral fat dysfunction and insulin resistance, and suggest the potential therapeutic value of medications elevating PRL levels to help maintain metabolic homeostasis.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    M. Andersen, D. Glintborg, Metabolic syndrome in hyperprolactinemia. Front Horm. Res. 49, 29–47 (2018). https://doi.org/10.1159/000486000

  2. 2.

    N.A. Pala, B.A. Laway, R.A. Misgar, R.A. Dar, Metabolic abnormalities in patients with prolactinoma: response to treatment with cabergoline. Diabetol. Metab. Syndr. 7, 99 (2015). https://doi.org/10.1186/s13098-015-0094-4

  3. 3.

    R.S. Auriemma, D. De Alcubierre, R. Pirchio, R. Pivonello, A. Colao, Glucose abnormalities associated to prolactin secreting pituitary adenomas. Front Endocrinol. 10, 327 (2019). https://doi.org/10.3389/fendo.2019.00327

  4. 4.

    R. Landgraf, M.M. Landraf-Leurs, A. Weissmann, R. Horl, K. von Werder, P.C. Scriba, Prolactin: a diabetogenic hormone. Diabetologia 13(2), 99–104 (1977)

  5. 5.

    L.B. Creemers, P.M. Zelissen, J.W. van ‘t Verlaat, H.P. Koppeschaar, Prolactinoma and body weight: a retrospective study. Acta Endocrinol. 125(4), 392–396 (1991)

  6. 6.

    M. Doknic, S. Pekic, M. Zarkovic, M. Medic-Stojanoska, C. Dieguez, F. Casanueva, V. Popovic, Dopaminergic tone and obesity: an insight from prolactinomas treated with bromocriptine. Eur. J. Endocrinol. 147(1), 77–84 (2002)

  7. 7.

    C.M. dos Santos Silva, F.R. Barbosa, G.A. Lima, L. Warszawski, R. Fontes, R.C. Domingues, M.R. Gadelha, BMI and metabolic profile in patients with prolactinoma before and after treatment with dopamine agonists. Obesity 19(4), 800–805 (2011). https://doi.org/10.1038/oby.2010.150

  8. 8.

    R.S. Auriemma, L. Granieri, M. Galdiero, C. Simeoli, Y. Perone, P. Vitale, C. Pivonello, M. Negri, T. Mannarino, C. Giordano, M. Gasperi, A. Colao, R. Pivonello, Effect of cabergoline on metabolism in prolactinomas. Neuroendocrinology 98(4), 299–310 (2013). https://doi.org/10.1159/000357810

  9. 9.

    C.A. Steele, I.A. MacFarlane, J. Blair, D.J. Cuthbertson, M. Didi, C. Mallucci, M. Javadpour, C. Daousi, Pituitary adenomas in childhood, adolescence and young adulthood: presentation, management, endocrine and metabolic outcomes. Eur. J. Endocrinol. 163(4), 515–522 (2010). https://doi.org/10.1530/EJE-10-0519

  10. 10.

    T. Wang, J. Lu, Y. Xu, M. Li, J. Sun, J. Zhang, B. Xu, M. Xu, Y. Chen, Y. Bi, W. Wang, G. Ning, Circulating prolactin associates with diabetes and impaired glucose regulation: a population-based study. Diabetes Care 36(7), 1974–1980 (2013). https://doi.org/10.2337/dc12-1893

  11. 11.

    L. Balbach, H. Wallaschofski, H. Volzke, M. Nauck, M. Dorr, R. Haring, Serum prolactin concentrations as risk factor of metabolic syndrome or type 2 diabetes? BMC Endocr. Disord. 13, 12 (2013). https://doi.org/10.1186/1472-6823-13-12

  12. 12.

    R. Wagner, M. Heni, K. Linder, C. Ketterer, A. Peter, A. Bohm, E. Hatziagelaki, N. Stefan, H. Staiger, H.U. Haring, A. Fritsche, Age-dependent association of serum prolactin with glycaemia and insulin sensitivity in humans. Acta Diabetol. 51(1), 71–78 (2014). https://doi.org/10.1007/s00592-013-0493-7

  13. 13.

    D. Glintborg, M. Altinok, H. Mumm, K. Buch, P. Ravn, M. Andersen, Prolactin is associated with metabolic risk and cortisol in 1007 women with polycystic ovary syndrome. Hum. Reprod. 29(8), 1773–1779 (2014). https://doi.org/10.1093/humrep/deu133

  14. 14.

    A. Albu, S. Florea, S. Fica, Is prolactin the missing link in adipose tissue dysfunction of polycystic ovary syndrome patients? Endocrine 51(1), 163–173 (2016). https://doi.org/10.1007/s12020-015-0655-1

  15. 15.

    X. Ruiz-Herrera, E.A. de Los Rios, J.M. Diaz, R.M. Lerma-Alvarado, L. Martinez de la Escalera, F. Lopez-Barrera, M. Lemini, E. Arnold, G. Martinez de la Escalera, C. Clapp, Y. Macotela, Prolactin promotes adipose tissue fitness and insulin sensitivity in obese males. Endocrinology 158(1), 56–68 (2017). https://doi.org/10.1210/en.2016-1444

  16. 16.

    P. Zhang, Z. Ge, H. Wang, W. Feng, X. Sun, X. Chu, C. Jiang, Y. Wang, D. Zhu, Y. Bi, Prolactin improves hepatic steatosis via CD36 pathway. J. Hepatol. 68(6), 1247–1255 (2018). https://doi.org/10.1016/j.jhep.2018.01.035

  17. 17.

    V. Chirico, S. Cannavo, A. Lacquaniti, V. Salpietro, M. Mandolfino, P.D. Romeo, O. Cotta, C. Munafo, G. Giorgianni, C. Salpietro, T. Arrigo, Prolactin in obese children: a bridge between inflammation and metabolic-endocrine dysfunction. Clin. Endocrinol. 79(4), 537–544 (2013). https://doi.org/10.1111/cen.12183

  18. 18.

    J. Li, M.S. Rice, T. Huang, S.E. Hankinson, C.V. Clevenger, F.B. Hu, S.S. Tworoger, Circulating prolactin concentrations and risk of type 2 diabetes in US women. Diabetologia 61(12), 2549–2560 (2018). https://doi.org/10.1007/s00125-018-4733-9

  19. 19.

    M. Lemini, X. Ruiz-Herrera, M.G. Ledesma-Colunga, N. Diaz-Lezama, E.A. De Los Rios, F. Lopez-Barrera, I. Mendez, G. Martinez de la Escalera, Y. Macotela, C. Clapp, Prolactin anterior pituitary expression and circulating levels are reduced in obese and diabetic rats: role of TGF-beta and TNF-alpha. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308(9), R792–R799 (2015). https://doi.org/10.1152/ajpregu.00327.2014

  20. 20.

    B.A. Larson, Y.N. Sinha, W.P. Vanderlaan, Serum growth hormone and prolactin during and after the development of the obese-hyperglycemic syndrome in mice. Endocrinology 98(1), 139–145 (1976). https://doi.org/10.1210/endo-98-1-139

  21. 21.

    Y.N. Sinha, S.R. Baxter, B.A. Larson, W.P. Vanderlaan, Levels of prolactin, growth hormone and insulin in genetically diabetic (db/db) mice. Proc. Soc. Exp. Biol. Med. 161(1), 78–81 (1979). https://doi.org/10.3181/00379727-161-40494

  22. 22.

    C.E. Boujon, G.E. Bestetti, F. Abramo, V. Locatelli, G.L. Rossi, The reduction of circulating growth hormone and prolactin in streptozocin-induced diabetic male rats is possibly caused by hypothalamic rather than pituitary changes. J. Endocrinol. 145(1), 19–26 (1995). https://doi.org/10.1677/joe.0.1450019

  23. 23.

    J. Yu, F. Xiao, Q. Zhang, B. Liu, Y. Guo, Z. Lv, T. Xia, S. Chen, K. Li, Y. Du, F. Guo, PRLR regulates hepatic insulin sensitivity in mice via STAT5. Diabetes 62(9), 3103–3113 (2013). https://doi.org/10.2337/db13-0182

  24. 24.

    S. Shao, Z. Yao, J. Lu, Y. Song, Z. He, C. Yu, X. Zhou, L. Zhao, J. Zhao, L. Gao, Ablation of prolactin receptor increases hepatic triglyceride accumulation. Biochem Biophys. Res Commun. 498(3), 693–699 (2018). https://doi.org/10.1016/j.bbrc.2018.03.048

  25. 25.

    M. Freemark, I. Avril, D. Fleenor, P. Driscoll, A. Petro, E. Opara, W. Kendall, J. Oden, S. Bridges, N. Binart, B. Breant, P.A. Kelly, Targeted deletion of the PRL receptor: effects on islet development, insulin production, and glucose tolerance. Endocrinology 143(4), 1378–1385 (2002). https://doi.org/10.1210/endo.143.4.8722

  26. 26.

    C. Huang, F. Snider, J.C. Cross, Prolactin receptor is required for normal glucose homeostasis and modulation of beta-cell mass during pregnancy. Endocrinology 150(4), 1618–1626 (2009). https://doi.org/10.1210/en.2008-1003

  27. 27.

    A.L. Ghaben, P.E. Scherer, Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20(4), 242–258 (2019). https://doi.org/10.1038/s41580-018-0093-z

  28. 28.

    M. Lonn, K. Mehlig, C. Bengtsson, L. Lissner, Adipocyte size predicts incidence of type 2 diabetes in women. FASEB J. 24(1), 326–331 (2010). https://doi.org/10.1096/fj.09-133058

  29. 29.

    O.O. Woolcott, R.N. Bergman, Relative fat mass (RFM) as a new estimator of whole-body fat percentage horizontal line—a cross-sectional study in American adult individuals. Sci. Rep. 8(1), 10980 (2018). https://doi.org/10.1038/s41598-018-29362-1

  30. 30.

    T.M. Wallace, J.C. Levy, D.R. Matthews, Use and abuse of HOMA modeling. Diabetes Care 27(6), 1487–1495 (2004). https://doi.org/10.2337/diacare.27.6.1487

  31. 31.

    G. Cai, G. Shi, S. Xue, W. Lu, The atherogenic index of plasma is a strong and independent predictor for coronary artery disease in the Chinese Han population. Medicine 96(37), e8058 (2017). https://doi.org/10.1097/MD.0000000000008058

  32. 32.

    U.I. Nwagha, E.J. Ikekpeazu, F.E. Ejezie, E.E. Neboh, I.C. Maduka, Atherogenic index of plasma as useful predictor of cardiovascular risk among postmenopausal women in Enugu, Nigeria. Afr. Health Sci. 10(3), 248–252 (2010)

  33. 33.

    M.C. Amato, C. Giordano, M. Galia, A. Criscimanna, S. Vitabile, M. Midiri, A. Galluzzo, G. AlkaMeSy Study, Visceral Adiposity Index: a reliable indicator of visceral fat function associated with cardiometabolic risk. Diabetes Care 33(4), 920–922 (2010). https://doi.org/10.2337/dc09-1825

  34. 34.

    R. Valdez, J.C. Seidell, Y.I. Ahn, K.M. Weiss, A new index of abdominal adiposity as an indicator of risk for cardiovascular disease. A cross-population study. Int J. Obes. Relat. Metab. Disord. 17(2), 77–82 (1993)

  35. 35.

    K.G. Alberti, R.H. Eckel, S.M. Grundy, P.Z. Zimmet, J.I. Cleeman, K.A. Donato, J.C. Fruchart, W.P. James, C.M. Loria, S.C. Smith Jr., International Diabetes Federation Task Force on Epidemiology and Prevention, Hational Heart Lung and Blood Institute, American Heart Association, World Heart Federation, International Atherosclerosis Society, International Association for the Study of Obesity, Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16), 1640–1645 (2009). https://doi.org/10.1161/CIRCULATIONAHA.109.192644

  36. 36.

    J. Yang, B. Eliasson, U. Smith, S.W. Cushman, A.S. Sherman, The size of large adipose cells is a predictor of insulin resistance in first-degree relatives of type 2 diabetic patients. Obesity 20(5), 932–938 (2012). https://doi.org/10.1038/oby.2011.371

  37. 37.

    T. Wang, Y. Xu, M. Xu, G. Ning, J. Lu, M. Dai, B. Xu, J. Sun, W. Sun, S. Lai, Y. Bi, W. Wang, Circulating prolactin and risk of type 2 diabetes: a prospective study. Am. J. Epidemiol. 184(4), 295–301 (2016). https://doi.org/10.1093/aje/kwv326

  38. 38.

    P. Gayoso-Diz, A. Otero-Gonzalez, M.X. Rodriguez-Alvarez, F. Gude, F. Garcia, A. De Francisco, A.G. Quintela, Insulin resistance (HOMA-IR) cut-off values and the metabolic syndrome in a general adult population: effect of gender and age: EPIRCE cross-sectional study. BMC Endocr. Disord. 13, 47 (2013). https://doi.org/10.1186/1472-6823-13-47

  39. 39.

    N. Motamed, D. Perumal, F. Zamani, H. Ashrafi, M. Haghjoo, F.S. Saeedian, M. Maadi, H. Akhavan-Niaki, B. Rabiee, M. Asouri, Conicity index and waist-to-hip ratio are superior obesity indices in predicting 10-year cardiovascular risk among men and women. Clin. Cardiol. 38(9), 527–534 (2015). https://doi.org/10.1002/clc.22437

  40. 40.

    L.A. Muir, C.K. Neeley, K.A. Meyer, N.A. Baker, A.M. Brosius, A.R. Washabaugh, O.A. Varban, J.F. Finks, B.F. Zamarron, C.G. Flesher, J.S. Chang, J.B. DelProposto, L. Geletka, G. Martinez-Santibanez, N. Kaciroti, C.N. Lumeng, R.W. O’Rourke, Adipose tissue fibrosis, hypertrophy, and hyperplasia: correlations with diabetes in human obesity. Obesity 24(3), 597–605 (2016). https://doi.org/10.1002/oby.21377

  41. 41.

    A. Hammarstedt, S. Gogg, S. Hedjazifar, A. Nerstedt, U. Smith, Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol. Rev. 98(4), 1911–1941 (2018). https://doi.org/10.1152/physrev.00034.2017

  42. 42.

    B. Gustafson, S. Hedjazifar, S. Gogg, A. Hammarstedt, U. Smith, Insulin resistance and impaired adipogenesis. Trends Endocrinol. Metab. 26(4), 193–200 (2015). https://doi.org/10.1016/j.tem.2015.01.006

  43. 43.

    R. Ye, P.E. Scherer, Adiponectin, driver or passenger on the road to insulin sensitivity? Mol. Metab. 2(3), 133–141 (2013). https://doi.org/10.1016/j.molmet.2013.04.001

  44. 44.

    C. Bole-Feysot, V. Goffin, M. Edery, N. Binart, P.A. Kelly, Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19(3), 225–268 (1998). https://doi.org/10.1210/edrv.19.3.0334

  45. 45.

    C. Clapp, S. Thebault, M.C. Jeziorski, G. Martinez De La Escalera, Peptide hormone regulation of angiogenesis. Physiol. Rev. 89(4), 1177–1215 (2009). https://doi.org/10.1152/physrev.00024.2009

  46. 46.

    L. Beltran, M.N. Fahie-Wilson, T.J. McKenna, L. Kavanagh, T.P. Smith, Serum total prolactin and monomeric prolactin reference intervals determined by precipitation with polyethylene glycol: evaluation and validation on common immunoassay platforms. Clin. Chem. 54(10), 1673–1681 (2008). https://doi.org/10.1373/clinchem.2008.105312

  47. 47.

    Melmed, S., The Pituitary, 3rd edn. (Elsevier/Academic Press, Amsterdam, 2011)

  48. 48.

    Z. Radikova, A. Penesova, E. Cizmarova, M. Huckova, R. Kvetnansky, M. Vigas, J. Koska, Decreased pituitary response to insulin-induced hypoglycaemia in young lean male patients with essential hypertension. J. Hum. Hypertens. 20(7), 510–516 (2006). https://doi.org/10.1038/sj.jhh.1002026

  49. 49.

    G.L. Noel, H.K. Suh, J.G. Stone, A.G. Frantz, Human prolactin and growth hormone release during surgery and other conditions of stress. J. Clin. Endocrinol. Metab. 35(6), 840–851 (1972). https://doi.org/10.1210/jcem-35-6-840

  50. 50.

    A.C. Hackney, H.C. Davis, A.R. Lane, Growth hormone-insulin-like growth factor axis, thyroid axis, prolactin, and exercise. Front Horm. Res 47, 1–11 (2016). https://doi.org/10.1159/000445147

  51. 51.

    S. Park, D.S. Kim, J.W. Daily, S.H. Kim, Serum prolactin concentrations determine whether they improve or impair beta-cell function and insulin sensitivity in diabetic rats. Diabetes Metab. Res Rev. 27(6), 564–574 (2011). https://doi.org/10.1002/dmrr.1215

  52. 52.

    L.B. Salans, J.L. Knittle, J. Hirsch, The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J. Clin. Invest 47(1), 153–165 (1968). https://doi.org/10.1172/JCI105705

  53. 53.

    M. Lundgren, M. Svensson, S. Lindmark, F. Renstrom, T. Ruge, J.W. Eriksson, Fat cell enlargement is an independent marker of insulin resistance and ‘hyperleptinaemia’. Diabetologia 50(3), 625–633 (2007). https://doi.org/10.1007/s00125-006-0572-1

  54. 54.

    K. Verboven, K. Wouters, K. Gaens, D. Hansen, M. Bijnen, S. Wetzels, C.D. Stehouwer, G.H. Goossens, C.G. Schalkwijk, E.E. Blaak, J.W. Jocken, Abdominal subcutaneous and visceral adipocyte size, lipolysis and inflammation relate to insulin resistance in male obese humans. Sci. Rep. 8(1), 4677 (2018). https://doi.org/10.1038/s41598-018-22962-x

  55. 55.

    K.G. Stenkula, C. Erlanson-Albertsson, Adipose cell size: importance in health and disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 315(2), R284–R295 (2018). https://doi.org/10.1152/ajpregu.00257.2017

  56. 56.

    T.P. Combs, U.B. Pajvani, A.H. Berg, Y. Lin, L.A. Jelicks, M. Laplante, A.R. Nawrocki, M.W. Rajala, A.F. Parlow, L. Cheeseboro, Y.Y. Ding, R.G. Russell, D. Lindemann, A. Hartley, G.R. Baker, S. Obici, Y. Deshaies, M. Ludgate, L. Rossetti, P.E. Scherer, A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology 145(1), 367–383 (2004). https://doi.org/10.1210/en.2003-1068

  57. 57.

    C.M. Kusminski, W.L. Holland, K. Sun, J. Park, S.B. Spurgin, Y. Lin, G.R. Askew, J.A. Simcox, D.A. McClain, C. Li, P.E. Scherer, MitoNEET-driven alterations in adipocyte mitochondrial activity reveal a crucial adaptive process that preserves insulin sensitivity in obesity. Nat. Med. 18(10), 1539–1549 (2012). https://doi.org/10.1038/nm.2899

  58. 58.

    Y. Macotela, B. Emanuelli, M.A. Mori, S. Gesta, T.J. Schulz, Y.H. Tseng, C.R. Kahn, Intrinsic differences in adipocyte precursor cells from different white fat depots. Diabetes 61(7), 1691–1699 (2012). https://doi.org/10.2337/db11-1753

  59. 59.

    R. Nanbu-Wakao, Y. Fujitani, Y. Masuho, M. Muramatu, H. Wakao, Prolactin enhances CCAAT enhancer-binding protein-beta (C/EBP beta) and peroxisome proliferator-activated receptor gamma (PPAR gamma) messenger RNA expression and stimulates adipogenic conversion of NIH-3T3 cells. Mol. Endocrinol. 14(2), 307–316 (2000). https://doi.org/10.1210/mend.14.2.0420

  60. 60.

    E.R. Hugo, D.C. Borcherding, K.S. Gersin, J. Loftus, N. Ben-Jonathan, Prolactin release by adipose explants, primary adipocytes, and LS14 adipocytes. J. Clin. Endocrinol. Metab. 93(10), 4006–4012 (2008). https://doi.org/10.1210/jc.2008-1172

  61. 61.

    G. Corona, E. Mannucci, E.A. Jannini, F. Lotti, V. Ricca, M. Monami, V. Boddi, E. Bandini, G. Balercia, G. Forti, M. Maggi, Hypoprolactinemia: a new clinical syndrome in patients with sexual dysfunction. J. Sex. Med. 6(5), 1457–1466 (2009). https://doi.org/10.1111/j.1743-6109.2008.01206.x

Download references

Acknowledgements

We thank Fernando López-Barrera, Daniel Mondragon and Antonio Prado for excellent technical assistance, Jessica Norris for critically editing the manuscript, and Teresita Ortiz-Ortiz (Hospital General de Querétaro, SESEQ) for supporting patient recruitment logistics. A. Ponce-López was a Master’s student from Maestría en Ciencias (Neurobiología), Universidad Nacional Autónoma de México (UNAM) and received CONACYT fellowship 569958. This study was supported by the National Council of Science and Technology of Mexico (CONACYT) grant 261168 to Y.M.

Author information

Correspondence to Yazmín Macotela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (Comité de Bioética, INB-UNAM, 024.H and Comité Estatal de Bioética en Investigación 007-119-583) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ponce, A.J., Galván-Salas, T., Lerma-Alvarado, R.M. et al. Low prolactin levels are associated with visceral adipocyte hypertrophy and insulin resistance in humans. Endocrine (2020) doi:10.1007/s12020-019-02170-x

Download citation

Keywords

  • Prolactin
  • Insulin resistance
  • Adipocyte
  • Adipose tissue