pp 1–3 | Cite as

Quercetin improves the effects of sorafenib on growth and migration of thyroid cancer cells

  • Marilena Celano
  • Valentina Maggisano
  • Stefania Bulotta
  • Lorenzo Allegri
  • Valeria Pecce
  • Luana Abballe
  • Giuseppe Damante
  • Diego RussoEmail author
Research Letter

In this study we tested the ability of co-administration of the nutraceutical quercetin in maintaining the anticancer effects of lower dosage of sorafenib against thyroid cancer cells in vitro. K1 and BCPAP cells treated with sorafenib 0.1 µM and quercetin 25 μM for 24 h showed a decrease in the cell proliferation rate (~70% vs untreated cells vs. ~30% reduction of sorafenib alone). Similar results were obtained in both cell lines regarding cell adhesion and migration properties, with stronger inhibition obtained when the two compounds were used in combination (~70% or ~50% vs untreated cells respectively). Finally, a significant increase of E-cadherin and decrease of N-cadherinexpression, indicating a reduced epithelial-mesenchymal transition, were determined by the association of the two compounds. In conclusion, maintenance of effective anticancer activity of lower doses of sorafenib against thyroid cancer cells may be obtained by the co-administration of quercetin. Further...


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    M.E. Cabanillas, D.G. McFadden, C. Durante, Thyroid cancer. Lancet 388, 2783–2795 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Bulotta, M. Celano, G. Costante, D. Russo, Emerging strategies for managing differentiated thyroid cancers refractory to radioiodine. Endocrine 52, 214–221 (2016)CrossRefGoogle Scholar
  3. 3.
    W. Yimaer, A. Abudouyimu, Y. Tian, S. Magaoweiya, D. Bagedati, H. Wen, Efficacy and safety of vascular endothelial growth factor receptor tyrosine kinase inhibitors in the treatment of advanced thyroid cancer: a meta-analysis of randomized controlled trials. Onco Targets Ther. 9, 1167–1173 (2016)PubMedPubMedCentralGoogle Scholar
  4. 4.
    L.A. Dunn, E.J. Sherman, S.S. Baxi, V. Tchekmedyian, R.K. Grewal, S.M. Larson, K.S. Pentlow, S. Haque, R.M. Tuttle, M.M. Sabra, S. Fish, L. Boucai, J. Walters, R.A. Ghossein, V.E. Seshan, A. Ni, D. Li, J.A. Knauf, D.G. Pfister, J.A. Fagin, A.L. Ho, Vemurafenib redifferentiation of BRAF mutant, RAI-refractory thyroid cancers. J. Clin. Endocrinol. Metab. 104(5), 1417–1428 (2019)CrossRefGoogle Scholar
  5. 5.
    R. Kotecha, A. Takami, J.L. Espinoza, Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget 7(32), 52517–52529 (2016)CrossRefGoogle Scholar
  6. 6.
    C.F.L. Gonçalves, M.L. de Freitas, A.C.F. Ferreira, Flavonoids, thyroid iodide uptake and thyroid cancer—a review. Int. J. Mol. Sci. 18(6), E1247 (2017)CrossRefGoogle Scholar
  7. 7.
    M. Celano, V. Maggisano, S.M. Lepore, D. Russo, S. Bulotta, Secoiridoids of olive and derivatives as potential coadjuvant drugs in cancer: a critical analysis of experimental studies. Pharmacol. Res. 142, 77–86 (2019)CrossRefGoogle Scholar
  8. 8.
    E. Mutlu Altunda, T. Kasaci, A. Yilmaz, B. Karademir, S. Koçtürk, Y. Taga, A.S. Yalçin, Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J. Thyroid Res. 2016, 9843675 (2016)Google Scholar
  9. 9.
    N. Miceli, A. Filocamo, S. Ragusa, F. Cacciola, P. Dugo, L. Mondello, M. Celano, V. Maggisano, M.F. Taviano, Chemical characterization and biological activities of phenolic‐rich fraction from cauline leaves of Isatis tinctoria L. (Brassicaceae) growing in Sicily, Italy. Chem. Biodivers. 14(8), e1700073 (2017)Google Scholar
  10. 10.
    V. Maggisano, M. Celano, S.M. Lepore, M. Sponziello, F. Rosignolo, V. Pecce, A. Verrienti, F. Baldan, C. Mio, L. Allegri, M. Maranghi, R. Falcone, G. Damante, D. Russo, S. Bulotta, Human telomerase reverse transcriptase in papillary thyroid cancer: gene expression, effects of silencing and regulation by BET inhibitors in thyroid cancer cells. Endocrine 63(3), 545–553 (2019)CrossRefGoogle Scholar
  11. 11.
    M. D’Agostino, P. Voce, M. Celano, M. Sponziello, S. Moretti, V. Maggisano, A. Verrienti, C. Durante, S. Filetti, E. Puxeddu, D. Russo, Sunitinib exerts only limited effects on the proliferation and differentiation of anaplastic thyroid cancer cells. Thyroid 22(2), 138–144 (2012)CrossRefGoogle Scholar
  12. 12.
    V. Maggisano, M. Celano, S. Lepore, G.E. Lombardo, M. Sponziello, F. Rosignolo, A. Verrienti, F. Baldan, E. Puxeddu, C. Durante, S. Filetti, G. Damante, D. Russo, S. Bulotta, Silencing of hTERT blocks growth and migration of anaplastic thyroid cancer cells. Mol. Cell. Endocrinol. 448, 34–40 (2017)CrossRefGoogle Scholar
  13. 13.
    S. Bulotta, M.V. Ierardi, J. Maiuolo, M.G. Cattaneo, A. Cerullo, L.M. Vicentini, N. Borgese, Basal nitric oxide release attenuates cell migration of HeLa and endothelial cells. Biochem. Biophys. Res. Commun. 386, 744–749 (2009)CrossRefGoogle Scholar
  14. 14.
    M. Sponziello, F. Rosignolo, M. Celano, V. Maggisano, V. Pecce, R.F. De Rose, G.E. Lombardo, C. Durante, S. Filetti, G. Damante, D. Russo, S. Bulotta, Fibronectin-1 expression is increased in aggressive thyroid cancer and favors the migration and invasion of cancer cells. Mol. Cell. Endocrinol. 431, 123–132 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Jin, O. Borkhuu, W. Bao, Y.T. Yang, Signaling pathways in thyroid cancer and their therapeutic implications. J. Clin. Med. Res. 8(4), 284–296 (2016)CrossRefGoogle Scholar
  16. 16.
    E. Mutlu Altundağ, T. Kasacı, A.M. Yılmaz, B. Karademir, S. Koçtürk, Y. Taga, A.S. Yalçın, Quercetin-induced cell death in human papillary thyroid cancer (B-CPAP) cells. J. Thyroid Res. 2016, 9843675 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Jakubowicz-Gil, E. Langner, D. Bądziul, I. Wertel, W. Rzeski, Quercetin and sorafenib as a novel and effective couple in programmed cell death induction in human gliomas. Neurotox. Res. 26(1), 64–77 (2014)CrossRefGoogle Scholar
  18. 18.
    C. Wang, L. Su, C. Wu, J. Wu, C. Zhu, G. Yuan, RGD peptide targeted lipid-coated nanoparticles for combinatorial delivery of sorafenib and quercetin against hepatocellular carcinoma. Drug Dev. Ind. Pharm. 42(12), 1938–1944 (2016)CrossRefGoogle Scholar
  19. 19.
    H.G. Vuong, A.M.A. Altibi, U.N.P. Duong, L. Hassell, Prognostic implication of BRAF and TERT promoter mutation combination in papillary thyroid carcinoma-a meta-analysis. Clin. Endocrinol. 87(5), 411–417 (2017)CrossRefGoogle Scholar
  20. 20.
    G.E. Lombardo, V. Maggisano, M. Celano, D. Cosco, C. Mignogna, F. Baldan, S.M. Lepore, L. Allegri, S. Moretti, C. Durante, G. Damante, M. Fresta, D. Russo, S. Bulotta, E. Puxeddu, Anti-hTERT siRNA-loaded nanoparticles block the growth of anaplastic thyroid cancer xenograft. Mol. Cancer Ther. 17(6), 1187–1195 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Health Sciences“Magna Graecia” University of CatanzaroCatanzaroItaly
  2. 2.Department of Medical and Biological SciencesUniversity of UdineUdineItaly
  3. 3.Department of Translational and Precision Medicine“Sapienza” University of RomeRomeItaly

Personalised recommendations