pp 1–11 | Cite as

Prognostic and predictive value of nuclear imaging in endocrine oncology

  • Giorgio Treglia
  • Bernard Goichot
  • Luca Giovanella
  • Elif Hindié
  • Abhishek Jha
  • Karel Pacak
  • David Taïeb
  • Thomas Walter
  • Alessio ImperialeEmail author


In the last few years, the role and use of medical technologies in (neuro)endocrine oncology has greatly evolved allowing not only important diagnostic information but also prognostic stratification in different clinical situations. The terms “prognostic” and “predictive” are commonly used to describe the relationships between biomarkers and patients’ clinical outcomes but have quite different meaning. The present work discusses the prognostic and predictive value of nuclear medicine imaging. It critically reviews the clinical significance and potential impact of molecular examinations on follow-up and therapeutic strategies in patients with neuroendocrine neoplasms, thyroid tumors, and adrenal malignancies.


Prognostic Predictive Nuclear medicine PET Endocrinology Neuroendocrine 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    G.M. Clark, Prognostic factors versus predictive factors: Examples from a clinical trial of erlotinib. Mol. Oncol. 1, 406–412 (2008)PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    G.M. Clark, D.M. Zborowski, J.L. Culbertson, M. Whitehead, M. Savoie, L. Seymour, F.A. Shepherd, Clinical utility of epidermal growth factor receptor expression for selecting patients with advanced non-small cell lung cancer for treatment with erlotinib. J. Thorac. Oncol. 1, 837–846 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    K.G. Moons, P. Royston, Y. Vergouwe, D.E. Grobbee, D.G. Altman, Prognosis and prognostic research: what, why, and how? BMJ 338, b375 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    R.D. Riley, J.A. Hayden, E.W. Steyerberg, K.G. Moons, K. Abrams, P.A. Kyzas, N. Malats, A. Briggs, S. Schroter, D.G. Altman, H. Hemingway; PROGRESS Group, Prognostic research strategy (PROGRESS) 2: prognostic factor research. PLoS Med. 10, e1001380 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    A. Vijayaraghavan, M.B. Efrusy, B. Goke, T. Kirchner, C.C. Santas, R.M. Goldberg, Cost-effectiveness of KRAS testing in metastatic colorectal cancer patients in the United States and Germany. Int. J. Cancer 131, 438–445 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    A. Dasari, C. Shen, D. Halperin, B. Zhao, S. Zhou, Y. Xu, T. Shih, J.C. Yao, Trends in the incidence, prevalence, and survival outcomes in patients with neuroendocrine tumors in the United States. JAMA Oncol. 3, 1335–1342 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    J. Barriuso, A. Custodio, R. Afonso, V. Alonso, A. Astudillo, J. Capdevila, R. García-Carbonero, E. Grande, P. Jimenez-Fonseca, M. Marazuela, C. Rodríguez-Antona, J. Aller, Prognostic and predictive biomarkers for somatostatin analogs, peptide receptor radionuclide therapy and serotonin pathway targets in neuroendocrine tumours. Cancer Treat. Rev. 70, 209–222 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    Z.R. Qian, T. Li, M. Ter-Minassian, J. Yang, J.A. Chan, L.K. Brais, Y. Masugi, A. Thiaglingam, N. Brooks, R. Nishihara, M. Bonnemarie, A. Masuda, K. Inamura, S.A. Kim, K. Mima, Y. Sukawa, R. Dou, X. Lin, D.C. Christiani, F. Schmidlin, C.S. Fuchs, U. Mahmood, S. Ogino, M.H. Kulke, Association between somatostatin receptor expression and clinical outcomes in neuroendocrine tumors. Pancreas 45, 1386–1393 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    R. Mai, D. Kaemmerer, T. Träger, E. Neubauer, J. Sänger, R.P. Baum, S. Schulz, A. Lupp, Different somatostatin and CXCR4 chemokine receptor expression in gastroenteropancreatic neuroendocrine neoplasms depending on their origin. Sci. Rep. 9, 4339 (2019)PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    D.A. Pattison, R.J. Hicks, Molecular imaging in the investigation of hypoglycaemic syndromes and their management. Endocr. Relat. Cancer 24, R203–R221 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    G. Treglia, A.S. Kroiss, A. Piccardo, F. Lococo, P. Santhanam, A. Imperiale, Role of positron emission tomography in thyroid and neuroendocrine tumors. Minerva Endocrinol. 43, 341–355 (2018)PubMedPubMedCentralGoogle Scholar
  12. 12.
    A. Rinke, H.H. Müller, C. Schade-Brittinger, K.J. Klose, P. Barth, M. Wied, C. Mayer, B. Aminossadati, U.F. Pape, M. Bläker, J. Harder, C. Arnold, T. Gress, R. Arnold; PROMID Study Group, Placebo-controlled, double-blind, prospective, randomized study on the effect of octreotide LAR in the control of tumor growth in patients with metastatic neuroendocrine midgut tumors: a report from the PROMID Study Group. J. Clin. Oncol. 27, 4656–4663 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    M.E. Caplin, M. Pavel, J.B. Ćwikła, A.T. Phan, M. Raderer, E. Sedláčková, G. Cadiot, E.M. Wolin, J. Capdevila, L. Wall, G. Rindi, A. Langley, S. Martinez, J. Blumberg, P. Ruszniewski; CLARINET Investigators, Lanreotide in metastatic enteropancreatic neuroendocrine tumors. N. Engl. J. Med 371, 224–233 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    C. Deerose, E. Hindie, E. Kebebew, B. Goichot, K. Pacak, D. Taieb, A. Imperiale, Molecular imaging of gastroenteropancreatic neuroendocrine tumors: current status and future directions. J. Nucl. Med. 57, 1949–56 (2016)CrossRefGoogle Scholar
  15. 15.
    R. Levine, E.P. Krenning, Clinical history of the theranostic radionuclide approach to neuroendocrine tumors and other types of cancer: historical review based on an interview of Eric P. Krenning by Rachel Levine. J. Nucl. Med. 58, 3S–9S (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    T. Brabander, W.A. van der Zwan, J.J.M. Teunissen, B.L.R. Kam, R.A. Feelders, W.W. de Herder, C.H.J. van Eijck, G.J.H. Franssen, E.P. Krenning, D.J. Kwekkeboom, Long-term efficacy, survival, and safety of [177Lu-DOTA0, Tyr3]octreotate in patients with gastroenteropancreatic and bronchial neuroendocrine tumors. Clin. Cancer. Res. 23, 4617–4623 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    C. Kratochwil, M. Stefanova, E. Mavriopoulou, T. Holland-Letz, A. Dimitrakopoulou-Strauss, A. Afshar-Oromieh, W. Mier, U. Haberkorn, F.L. Giesel, SUV of [68Ga]DOTATOC-PET/CT predicts response probability of prrt in neuroendocrine tumors. Mol. Imaging Biol. 17, 313–318 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    J. Strosberg, G. El-Haddad, E. Wolin, A. Hendifar, J. Yao, B. Chasen, E. Mittra, P.L. Kunz, M.H. Kulke, H. Jacene, D. Bushnell, T.M. O’Dorisio, R.P. Baum, H.R. Kulkarni, M. Caplin, R. Lebtahi, T. Hobday, E. Delpassand, E. Van Cutsem, A. Benson, R. Srirajaskanthan, M. Pavel, J. Mora, J. Berlin, E. Grande, N. Reed, E. Seregni, K. Öberg, M. Lopera Sierra, P. Santoro, T. Thevenet, J.L. Erion, P. Ruszniewski, D. Kwekkeboom, E. Krenning, NETTER-1 Trial Investigators, Phase 3 Trial of (177)Lu-dotatate for midgut neuroendocrine tumors. N. Engl. J. Med. 376, 125–135 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    J. Kowalski, M. Henze, J. Schuhmacher, H.R. Mäcke, M. Hofmann, U. Haberkorn, Evaluation of positron emission tomography imaging using [68Ga]-DOTA-D Phe(1)-Tyr(3)-Octreotide in comparison to [111In]-DTPAOC SPECT. First results in patients with neuroendocrine tumors. Mol. Imaging Biol. 5, 42–48 (2003)PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    A. Tirosh, E. Kebebew, The utility of (68)Ga-DOTATATE positron-emission tomography/computed tomography in the diagnosis, management, follow-up and prognosis of neuroendocrine tumors. Future Oncol. 14, 111–122 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    S. Ezzidin, J. Lohmar, C.J. Yong-Hing, A. Sabet, H. Ahmadzadehfar, G. Kukuk, H.J. Biersack, S. Guhlke, K. Reichmann, Does the pretherapeutic tumor SUV in 68Ga DOTATOC PET predict the absorbed dose of 177Lu octreotate? Clin. Nucl. Med. 37, e141–e147 (2012)CrossRefGoogle Scholar
  22. 22.
    M.Ö. Öksüz, L. Winter, C. Pfannenberg, G. Reischl, K. Müssig, R. Bares, H. Dittmann, Peptide receptor radionuclide therapy of neuroendocrine tumors with (90)Y-DOTATOC: is treatment response predictable by pre-therapeutic uptake of (68)Ga-DOTATOC? Diagn. Interv. Imaging 95, 289–300 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    R.A. Werner, L.B. Solnes, M.S. Javadi, A. Weich, M.A. Gorin, K.J. Pienta, T. Higuchi, A.K. Buck, M.G. Pomper, S.P. Rowe, C. Lapa, SSTR-RADS Version 1.0 as a Reporting System for SSTR PET imaging and selection of potential PRRT candidates: a proposed standardization framework. J. Nucl. Med. 59, 1085–1091 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    A. Sundin, Novel functional imaging of neuroendocrine tumors. Endocrinol. Metab. Clin. N. Am. 47, 505–523 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Toumpanakis, M.K. Kim, A. Rinke, D.S. Bergestuen, C. Thirlwell, M.S. Khan, R. Salazar, K. Oberg, Combination of cross-sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 99, 63–74 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    T. Binderup, U. Knigge, A. Loft, B. Federspiel, A. Kjaer, 18F-fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin. Cancer Res. 16, 978–985 (2010)PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    H. Bahri, L. Laurence, J. Edeline, H. Leghzali, A. Devillers, J.L. Raoul, M. Cuggia, H. Mesbah, B. Clement, E. Boucher, E. Garin, High prognostic value of 18F-FDG PET for metastatic gastroenteropancreatic neuroendocrine tumors: a long-term evaluation. J. Nucl. Med. 55, 1786–1790 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    H. Sorbye, S. Welin, S.W. Langer, L.W. Vestermark, N. Holt, P. Osterlund, S. Dueland, E. Hofsli, M.G. Guren, K. Ohrling, E. Birkemeyer, E. Thiis-Evensen, M. Biagini, H. Gronbaek, L.M. Soveri, I.H. Olsen, B. Federspiel, J. Assmus, E.T. Janson, U. Knigge, Predictive and prognostic factors for treatment and survival in 305 patients with advanced gastrointestinal neuroendocrine carcinoma (WHO G3): the NORDIC NEC study. Ann. Oncol. 24, 152–160 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    S. Ezziddin, L. Adler, A. Sabet, A.D. Pöppel, F. Grabellus, A. Yüce, H.P. Fischer, B. Simon, T. Höller, H.J. Biersack, J. Nagarajah, Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F-FDG PET: feasibility of a metabolic grading system. J. Nucl. Med. 55, 1260–1266 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    A. Imperiale, J. Garnon, P. Bachellier, A. Gangi, I.J. Namer, Simultaneous (18)F-FDOPA PET/CT-guided biopsy and radiofrequency ablation of recurrent neuroendocrine hepatic metastasis: further step toward a theranostic approach. Clin. Nucl. Med. 40, e334–e335 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    S. Severi, O. Nanni, L. Bodei, M. Sansovini, A. Ianniello, S. Nicoletti, E. Scarpi, F. Matteucci, L. Gilardi, G. Paganelli, Role of 18FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur. J. Nucl. Med. Mol. Imaging 40, 881–888 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    M. Sansovini, S. Severi, A. Ianniello, S. Nicolini, L. Fantini, E. Mezzenga, F. Ferroni, E. Scarpi, M. Monti, A. Bongiovanni, S. Cingarlini, C.M. Grana, L. Bodei, G. Paganelli, Long-term follow-up and role of FDG PET in advanced pancreatic neuroendocrine patients treated with 177Lu-DOTATATE. Eur. J. Nucl. Med. Mol. Imaging 44, 490–499 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    E. Hindié, The NETPET score: combining FDG and somatostatin receptor imaging for optimal management of patients with metastatic well-differentiated neuroendocrine tumors. Theranostics 7, 1159–1163 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    D.L. Chan, N. Pavlakis, G.P. Schembri, E.J. Bernard, E. Hsiao, A. Hayes, T. Barnes, C. Diakos, M. Khasraw, J. Samra, E. Eslick, P.J. Roach, A. Engel, S.J. Clarke, D.L. Bailey, Dual somatostatin receptor/FDG PET/CT imaging in metastatic neuroendocrine tumours: proposal for a novel grading scheme with prognostic significance. Theranostics 7, 1149–1158 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    E. Rust, F. Hubele, E. Marzano, B. Goichot, P. Pessaux, J.E. Kurtz, A. Imperiale, Nuclear medicine imaging of gastro-entero-pancreatic neuroendocrine tumors. The key role of cellular differentiation and tumor grade: from theory to clinical practice. Cancer Imaging 12, 173–184 (2012)PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    P. Zhang, J. Yu, J. Li, L. Shen, N. Li, H. Zhu, S. Zhai, Y. Zhang, Z. Yang, M. Lu, Clinical and prognostic value of PET/CT imaging with combination of 68Ga-DOTATATE and 18F-FDG in gastroenteropancreatic neuroendocrine neoplasms. Contrast Media Mol: Imaging 2018, 2340389 (2018)Google Scholar
  37. 37.
    R. Abgral, S. Leboulleux, D. Deandreis, A. Aupérin, J. Lumbroso, C. Dromain, P. Duvillard, D. Elias, T. de Baere, J. Guigay, M. Ducreux, M. Schlumberger, E. Baudin, Performance of (18)fluorodeoxyglucose-positron emission tomography and somatostatin receptor scintigraphy for high Ki67 (≥10%) well-differentiated endocrine carcinoma staging. J. Clin. Endocrinol. Metab. 96, 665–671 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    M. Rinzivillo, S. Partelli, D. Prosperi, G. Capurso, P. Pizzichini, E. Iannicelli, E. Merola, F. Muffatti, F. Scopinaro, O. Schillaci, M. Salgarello, M. Falconi, G. Delle Fave, F. Panzuto, Clinical Usefulness of 18F-fluorodeoxyglucose positron emission tomography in the diagnostic algorithm of advanced entero-pancreatic neuroendocrine neoplasms. Oncologist 23, 186–192 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    C.B. Johnbeck, U. Knigge, S.W. Langer, A. Loft, A.K. Berthelsen, B. Federspiel, T. Binderup, A. Kjaer, Prognostic value of 18F-FLT PET in patients with neuroendocrine neoplasms: a prospective head-to-head comparison with 18F-FDG PET and Ki-67 in 100 patients. J. Nucl. Med. 57, 1851–1857 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    S. Zerdoud, A.L. Giraudet, S. Leboulleux, L. Leenhardt, S. Bardet, J. Clerc, M.E. Toubert, A. Al Ghuzlan, P.J. Lamy, C. Bournaud, I. Keller, F. Sebag, R. Garrel, E. Mirallié, L. Groussin, E. Hindié, D. Taïeb, Radioactive iodine therapy, molecular imaging and serum biomarkers for differentiated thyroid cancer: 2017 guidelines of the French Societies of Nuclear Medicine, Endocrinology, Pathology, Biology, Endocrine Surgery and Head and Neck Surgery. Ann. Endocrinol. 78, 162–175 (2017)CrossRefGoogle Scholar
  41. 41.
    D. Ylli, D. Van Nostrand, L. Wartofsky, Conventional radioiodine therapy for differentiated thyroid cancer. Endocrinol. Metab. Clin. N. Am. 48, 181–197 (2019)CrossRefGoogle Scholar
  42. 42.
    M. Luster, A. Pfestroff, F.A. Verburg, Recent advances in nuclear medicine in endocrine oncology. Curr. Opin. Oncol. 29, 1–6 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    G. Treglia, L. Giovanella, Prognostic role of FDG-PET/CT in differentiated thyroid carcinoma: where are we now? J. Med. Imaging Radiat. Oncol. 59, 278–280 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    E. Glikson, E. Alon, L. Bedrin, Y.P. Talmi, Prognostic factors in differentiated thyroid cancer revisited. Isr. Med. Assoc. J. 19, 114–118 (2017)PubMedPubMedCentralGoogle Scholar
  45. 45.
    A. Piccardo, M. Puntoni, F. Bertagna, G. Treglia, L. Foppiani, F. Arecco, R. Giubbini, M. Naseri, A. Cistaro, M. Cabria, F. Bardesono, L. Ceriani, F. Orlandi, L. Giovanella, 18F-FDG uptake as a prognostic variable in primary differentiated thyroid cancer incidentally detected by PET/CT: a multicentre study. Eur. J. Nucl. Med. Mol. Imaging 41, 1482–1491 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    P.M. Manohar, L.J. Beesley, E.L. Bellile, F.P. Worden, A.M. Avram, Prognostic value of FDG-PET/CT metabolic parameters in metastatic radioiodine-refractory differentiated thyroid cancer. Clin. Nucl. Med. 43, 641–647 (2018)PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    R.J. Robbins, Q. Wan, R.K. Grewal, R. Reibke, M. Gonen, H.W. Strauss, R.M. Tuttle, W. Drucker, S.M. Larson, Real-time prognosis for metastatic thyroid carcinoma based on 2-[18F]fluoro-2-deoxy-D-glucose-positron emission tomography scanning. J. Clin. Endocrinol. Metab. 91, 498–505 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    A.L. Giraudet, D. Taïeb, PET imaging for thyroid cancers: current status and future directions. Ann. Endocrinol. 78, 38–42 (2017)CrossRefGoogle Scholar
  49. 49.
    D. Deandreis, A. Al Ghuzlan, S. Leboulleux, L. Lacroix, J.P. Garsi, M. Talbot, J. Lumbroso, E. Baudin, B. Caillou, J.M. Bidart, M. Schlumberger, Do histological, immunohistochemical, and metabolic (radioiodine and fluorodeoxyglucose uptakes) patterns of metastatic thyroid cancer correlate with patient outcome? Endocr. Relat. Cancer 18, 159–169 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    A. Piccardo, L. Foppiani, S. Morbelli, P. Bianchi, F. Barbera, E. Biscaldi, V. Altrinetti, G. Villavecchia, M. Cabria, Could [18]F-fluorodeoxyglucose PET/CT change the therapeutic management of stage IV thyroid cancer with positive (131)I whole body scan?. Q. J. Nucl. Med. Mol. Imaging 55, 57–65 (2011)PubMedPubMedCentralGoogle Scholar
  51. 51.
    G. Treglia, S. Annunziata, B. Muoio, M. Salvatori, L. Ceriani, L. Giovanella, The role of fluorine-18-fluorodeoxyglucose positron emission tomography in aggressive histological subtypes of thyroid cancer: an overview. Int. J. Endocrinol. 2013, 856189 (2013)PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    S. Yoon, Y.S. An, S.J. Lee, E.Y. So, J.H. Kim, Y.S. Chung, J.K. Yoon, Relation between F-18 FDG uptake of PET/CT and BRAFV600E mutation in papillary thyroid cancer. Medicine 94, e2063 (2015)PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    S. Leboulleux, P.R. Schroeder, N.L. Busaidy, A. Auperin, C. Corone, H.A. Jacene, M.E. Ewertz, C. Bournaud, R.L. Wahl, S.I. Sherman, P.W. Ladenson, M. Schlumberger, Assessment of the incremental value of recombinant thyrotropin stimulation before 2-[18F]-Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography imaging to localize residual differentiated thyroid cancer. J. Clin. Endocrinol. Metab. 94, 1310–1316 (2009)PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management guidelines for adult patients with thyroid nodules and differentiated thyroid cancer: the American Thyroid Association guidelines task force on thyroid nodules and differentiated thyroid cancer. Thyroid 26, 1–133 (2016)PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    L.S. Freudenberg, W. Jentzen, A. Stahl, A. Bockisch, S.J. Rosenbaum-Krumme, Clinical applications of 124I-PET/CT in patients with differentiated thyroid cancer. Eur. J. Nucl. Med. Mol. Imaging 38 Suppl 1, S48–56 (2011)PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    L.S. Freudenberg, W. Jentzen, R. Görges, T. Petrich, R.J. Marlowe, J. Knust et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 46, 121–8 (2007)PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Gr Khorjekar, D. Van Nostrand, C. Garcia, J. O’Neil, S. Moreau, F.B. Atkins et al. Do negative 124I pretherapy positron emission tomography scans in patients with elevated serum thyroglobulin levels predict negative 131I-post therapy scans? Thyroid 24, 1394–1394 (2014)PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    M. Ruhlmann, W. Jentzen, V. Ruhlmann, C. Pettinato, G. Rossi, I. Binse et al. High level of agreement between pretherapeutic 124I PET and intratherapeutic 131I imaging in detecting iodine-positive thyroid cancer metastases. J. Nucl. Med. 57, 1339–1342 (2016)PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    G. Treglia, F. Cocciolillo, F. Di Nardo, A. Poscia, C. de Waure, A. Giordano et al. Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 dihydroxyphenylalanine positron emission tomography: a meta-analysis. Acad. Radiol. 19, 1290–1299 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    F. Caobelli, A. Chiaravalloti, L. Evangelista, G. Saladini, O. Schillaci, M. Vadrucci et al. Predictive and prognostic value of 18F-DOPA PET/CT in patients affected by recurrent medullary carcinoma of the thyroid. Ann. Nucl. Med. 32, 7–15 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    G. Treglia, F. Cocciolillo, F. Di Nardo, A. Poscia, C. de Waure, A. Giordano, V. Rufini, Detection rate of recurrent medullary thyroid carcinoma using fluorine-18 fluorodeoxyglucose positron emission tomography: a meta-analysis. Endocrine 42, 535–545 (2012)PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    J.H. Yang, C.P. Camacho, S.C. Lindsey, F.O.F. Valente, D.M. Andreoni, L.Y. Yamaga, J. Wagner, R.P.M. Biscolla, R.M.B. Maciel, The combined use of calcitonin doubling time and 18F-FDG PET/CT improves prognostic values in medullary thyroid carcinoma: the clinical utility of 18F-FDG PET/CT. Endocr. Pract. 23, 942–948 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    P.Y. Salaun, L. Campion, C. Ansquer, E. Frampas, C. Mathieu, P. Robin, C. Bournaud, J.P. Vuillez, D. Taieb, C. Rousseau, D. Drui, E. Mirallié, F. Borson-Chazot, D.M. Goldenberg, J.F. Chatal, J. Barbet, F. Kraeber-Bodéré, 18F-FDG PET predicts survival after pretargeted radioimmunotherapy in patients with progressive metastatic medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging 41, 1501–1510 (2014)PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    R.A. Werner, R.A. Bundschuh, T. Higuchi, M.S. Javadi, S.P. Rowe, N. Zsótér, M. Kroiss, M. Fassnacht, A.K. Buck, M.C. Kreissl, C. Lapa, Volumetric and texture analysis of pretherapeutic 18F-FDG PET can predict overall survival in medullary thyroid cancer patients treated with Vandetanib. Endocrine 63, 293–300 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    R.A. Werner, J.S. Schmid, T. Higuchi, M.S. Javadi, S.P. Rowe, B. Märkl, C. Aulmann, M. Fassnacht, M. Kroiss, C. Reiners, A.K. Buck, M.C. Kreissl, C. Lapa, Predictive value of 18F-FDG PET in patients with advanced medullary thyroid carcinoma treated with vandetanib. J. Nucl. Med 59, 756–761 (2018)PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    L. Giovanella, G. Treglia, I. Iakovou, J. Mihailovic, F.A. Verburg, M. Luster. EANM practice guideline for PET/CT imaging in medullary thyroid carcinoma. Eur. J. Nucl. Med. Mol. Imaging (2019) [Epub ahead of print]Google Scholar
  67. 67.
    C. Guerin, F. Pattou, L. Brunaud, J.C. Lifante, E. Mirallié, M. Haissaguerre, D. Huglo, P. Olivier, C. Houzard, C. Ansquer, E. Hindié, A. Loundou, C. Archange, A. Tabarin, F. Sebag, K. Baumstarck, D. Taïeb, Performance of 18F-FDG PET/CT in the characterization of adrenal masses in noncancer patients: a prospective study. J. Clin. Endocrinol. Metab. 102, 2465–2472 (2017)PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    S. Leboulleux, C. Dromain, G. Bonniaud, A. Aupérin, B. Caillou, J. Lumbroso, R. Sigal, E. Baudin, M. Schlumberger, Diagnostic and prognostic value of 18-fluorodeoxyglucose positron emission tomography in adrenocortical carcinoma: a prospective comparison with computed tomography. J. Clin. Endocrinol. Metab. 91, 920–925 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    L. Tessonnier, C. Ansquer, C. Bournaud, F. Sebag, E. Mirallié, J.C. Lifante, F.F. Palazzo, I. Morange, D. Drui, C. de la Foucardère, J. Mancini, D. Taïeb, (18)F-FDG uptake at initial staging of the adrenocortical cancers: a diagnostic tool but not of prognostic value. World J. Surg. 37, 107–112 (2013)PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    K. Satoh, D. Patel, W. Dieckmann, N. Nilubol, E. Kebebew, Whole body metabolic tumor volume and total lesion glycolysis predict survival in patients with adrenocortical carcinoma. Ann. Surg. Oncol. 22, S714–S720 (2015)PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    D. Taieb, K. Pacak, New insights into the nuclear imaging phenotypes of cluster 1 pheochromocytoma and paraganglioma. Trends Endocrinol. Metab. 28, 807–817 (2017)PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    J. Crona, A. Lamarca, S. Ghosal, S. Welin. B. Skogseid, K. Pacak. Genotype-phenotype correlations in pheochromocytoma and paraganglioma. Endocr. Relat. Cancer (2019) [Epub ahead of print]Google Scholar
  73. 73.
    D. Taïeb, R.J. Hicks, E. Hindié, B.A. Guillet, A. Avram, P. Ghedini, H.J. Timmers, A.T. Scott, S. Elojeimy, D. Rubello, I.J. Virgolini, S. Fanti, S. Balogova, N. Pandit-Taskar, K. Pacak, European Association of Nuclear Medicine Practice Guideline/Society of Nuclear Medicine and Molecular Imaging Procedure Standard 2019 for radionuclide imaging of phaeochromocytoma and paraganglioma. Eur. J. Nucl. Med. Mol. Imaging 46, 2112–2137 (2019)PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    S. Hescot, M. Curras-Freixes, T. Deutschbein, A. van Berkel, D. Vezzosi, L. Amar, C. de la Fouchardière, N. Valdes, N. Riccardi, C. Do Cao, J. Bertherat, B. Goichot, F. Beuschlein, D. Drui, L. Canu, P. Niccoli, S. Laboureau, A. Tabarin, S. Leboulleux, B. Calsina, R. Libé, A. Faggiano, M. Schlumberger, F. Borson-Chazot, M. Mannelli, A.P. Gimenez-Roqueplo, P. Caron, H.J.L.M. Timmers, M. Fassnacht, M. Robledo, I. Borget, E. Baudin; European Network for the Study of Adrenal Tumors (ENS@T). Prognosis of malignant pheochromocytoma and paraganglioma (MAPP-Prono study): an ENS@T retrospective study. J. Clin. Endocrinol. Metab. 104, 2367–2374 (2019)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinic of Nuclear Medicine and PET/CT CenterImaging Institute of Southern SwitzerlandBellinzonaSwitzerland
  2. 2.Health Technology Assessment UnitEnte Ospedaliero CantonaleBellinzonaSwitzerland
  3. 3.Clinical Trial UnitEnte Ospedaliero CantonaleBellinzonaSwitzerland
  4. 4.Department of Nuclear Medicine and Molecular ImagingLausanne University Hospital and University of LausanneLausanneSwitzerland
  5. 5.Endocrinology and Internal Medicine Department, Hautepierre HospitalUniversity Hospitals of StrasbourgStrasbourgFrance
  6. 6.University Hospital and University of ZürichZürichSwitzerland
  7. 7.Nuclear Medicine Department, Haut-Lévêque Hospital, University Hospitals of BordeauxUniversity of BordeauxBordeauxFrance
  8. 8.LabEx TRAILUniversity of BordeauxBordeauxFrance
  9. 9.Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUSA
  10. 10.Nuclear Medicine, La Timone University HospitalAix-Marseille UniversityMarseilleFrance
  11. 11.European Center for Research in Medical ImagingAix-Marseille UniversityMarseilleFrance
  12. 12.Medical Oncology, Edouard Herriot HospitalHospices Civils de LyonLyonFrance
  13. 13.University of Lyon, Université Lyon 1LyonFrance
  14. 14.Biophysics and Nuclear Medicine, Hautepierre Hospital, University Hospitals of StrasbourgStrasbourg University/FMTSStrasbourgFrance
  15. 15.Molecular Imaging–DRHIM, IPHC, UMR 7178, CNRS/UnistraStrasbourgFrance

Personalised recommendations