pp 1–8 | Cite as

New insights into weight management by orlistat in comparison with cinnamon as a natural lipase inhibitor

  • Naglaa F. KhedrEmail author
  • Abla M. Ebeid
  • Rania M. Khalil
Original Article


Background and objectives

Orlistat which is taken by obese patients may present some therapeutic assistance through its inhibition of lipase activity. Otherwise, a natural lipase inhibitor as cinnamon is widely used traditional medicine to decrease cholesterol and body weight. The current study aimed to investigate the weight management of orlistat in comparison with cinnamon through different obesity related targets.


Subjects were divided into: Group 1: subjects received cinnamon capsules for 60 days. Group 2: subjects were received orlistat twice daily for 30 days, then once daily for another 30 days. Blood samples were collected at baseline and after 2 months.


Both orlistat and cinnamon groups showed a significant reduction in BMI, lipid profile, and lipase activity compared with baseline. Orlistat group showed significant elevation (p < 0.001) in glucagon, insulin-degrading enzyme (IDE) and dopamine level concomitant with the decrease of serum glutamate compared with baseline level of the same group and cinnamon group. However, cinnamon reduced serum insulin level and insulin resistance (IR) compared with baseline level of the same group and orlistat group.


Orlistat can be used in weight management not only for its pancreatic lipase inhibition but also, due to its indirect appetite reduction effect through elevated glucagon, IDE and dopamine levels and its inhibitory effect on glutamate neurotransmitter, whereas, cinnamon improves BMI and glycaemic targets.


Cinnamon Dopamine Dyslipidemia Glutamate Obesity Orlistat 



Authors thank medical staff members of Diabetes and Endocrinology Unit, Internal Medicine Department, Tanta University Hospital, Egypt, for their help in collecting patient’s data and samples for analysis.


The research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors. The authors funded the research.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    C.I. Gamboa-Gómez, N.E. Rocha-Guzmán, J.A. Gallegos-Infante, M.R. Moreno-Jiménez, B.D. Vázquez-Cabral, R.F. González-Laredo, Plants with potential use on obesity and its complications. EXCLI J. 14, 809–831 (2015)PubMedPubMedCentralGoogle Scholar
  2. 2.
    X. Wei, B. Ke, Z. Zhao, X. Ye, Z. Gao, J. Ye, Regulation of insulin degrading enzyme activity by obesity-associated factors and pioglitazone in liver of diet-induced obese mice. PLoS ONE 9(4), e95399 (2014)CrossRefGoogle Scholar
  3. 3.
    G.R. Tundo, D. Sbardella, C. Ciaccio, G. Grasso, M. Gioia, A. Coletta, F. Polticelli, D. Di Pierro, D. Milardi, P. Van Endert, S. Marini, M. Coletta, Multiple functions of insulin-degrading enzyme: a metabolic crosslight? Crit. Rev. Biochem Mol. Biol. 52(5), 554–582 (2017)CrossRefGoogle Scholar
  4. 4.
    D.K. Nomura, J.E. Casida, Lipases and their inhibitors in health and disease. Chem. Biol. Interact. 259(Pt B), 211–222 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Matsuura, K. Shikano, T. Saito, E. Iwakoshi-Ukena, M. Furumitsu, Y. Ochi, M. Sato, G.E. Bentley, L.J. Kriegsfeld, K. Ukena, Neurosecretory protein GL, a hypothalamic small secretory protein, participates in energy homeostasis in male mice. Endocrinology 158(5), 1120–1129 (2017)CrossRefGoogle Scholar
  6. 6.
    T.L. Lee, C.T. Hsu, S.T. Yen, C.W. Lai, J.T. Cheng, Activation of beta3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes. J. Auton. Nerv. Syst. 74(2–3), 86–90 (1998)CrossRefGoogle Scholar
  7. 7.
    M. Michaelides, P.K. Thanos, R. Kim, J. Cho, M. Ananth, G.J. Wang, N.D. Volkow, PET imaging predicts future body weight and cocaine preference. Neuroimage 59(2), 1508–1513 (2012)CrossRefGoogle Scholar
  8. 8.
    M. Li, C.M. Reynolds, D.M. Sloboda, C. Gray, M.H. Vickers, Effects of taurine supplementation on hepatic markers of inflammation and lipid metabolism in mothers and offspring in the setting of maternal obesity. PLoS ONE 8(10), e76961 (2013)CrossRefGoogle Scholar
  9. 9.
    T. Buchholz, M.F. Melzig, Polyphenolic compounds as pancreatic lipase inhibitors. Planta Med. 81(10), 771–783 (2015)CrossRefGoogle Scholar
  10. 10.
    F. Bano, H. Ikram, N. Akhtar, Neurochemical and behavioral effects of cinnamomi cassiae (Lauraceae) bark aqueous extract in obese rats. Pak. J. Pharm. Sci. 27(3), 559–563 (2014)PubMedGoogle Scholar
  11. 11.
    S.L. Glisan, K.A. Grove, N.H. Yennawar, J.D. Lambert, Inhibition of pancreatic lipase by black tea theaflavins: comparative enzymology and in silico modeling studies. Food Chem. 216, 296–300 (2017)CrossRefGoogle Scholar
  12. 12.
    H.M. Al-Kuraishy, A.I. Al-Gareeb, Effect of orlistat alone or in combination with garcinia cambogia on visceral adiposity index in obese patients. J. Intercult. Ethnopharmacol. 5(4 Aug), 408–414 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Genuth, K.G. Alberti, P. Bennett, J. Buse, R. Defronzo, R. Kahn, J. Kitzmiller, W.C. Knowler, H. Lebovitz, A. Lernmark, D. Nathan, J. Palmer, R. Rizza, C. Saudek, J. Shaw, M. Steffes, M. Stern, J. Tuomilehto, P. Zimmet; Expert Committee on the Diagnosis and Classification of Diabetes Mellitus, Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care. 26(11), 3160–3167 (2003)CrossRefGoogle Scholar
  14. 14.
    C.C. Allain, L.S. Poon, C.S. Chan, W. Richmond, P.C. Fu, Enzymatic determination of total serum cholesterol. Clin. Chem. 20(4), 470–475 (1974)PubMedGoogle Scholar
  15. 15.
    S.G. Klotzsch, J.R. McNamara, Triglyceride measurements: a review of methods and interferences. Clin. Chem. 36(9), 1605–1613 (1990)PubMedGoogle Scholar
  16. 16.
    J.A. Lott, S.T. Patel, A.K. Sawhney, S.C. Kazmierczak, J.E. Love Jr., Assays of serum lipase: analytical and clinical considerations. Clin. Chem. 32(7), 1290–1302 (1986)PubMedGoogle Scholar
  17. 17.
    Y. Simanjuntak, J.J. Liang, Y.L. Lee, Y.L. Lin, Japanese encephalitis virus exploits dopamine D2 receptor-phospholipase C to target dopaminergic human neuronal cells. Front Microbiol. 8, 651 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Kullin, Z. Li, J. Bondo Hansen, N. Welsh, F.A. Karlsson, S. Sandler, Protection of rat pancreatic islets by potassium channel openers against alloxan, sodium nitroprussideand interleukin- 1beta mediated suppression–possible involvement of themitochondrial membrane potential. Diabetologia 46, 80–88 (2003)CrossRefGoogle Scholar
  19. 19.
    K.M. Panag, N. Kaur, G. Goyal, Correlation of insulin resistance by various methods with fasting insulin in obese. Int J. Appl Basic Med Res 4(Suppl 1), S41–S45 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    S. Landau, A handbook of statistical analyses using SPSS, CRC (2004)Google Scholar
  21. 21.
    Organization WH, World Health Organization obesity and overweight fact sheet (2016)Google Scholar
  22. 22.
    N.V. Dhurandhar, D. Schoeller, A.W. Brown, S.B. Heymsfield, D. Thomas, T.I. Sørensen, J.R. Speakman, M. Jeansonne, D.B. Allison; Energy Balance Measurement Working Group, Energy balance measurement: when something is not better than nothing. Int J. Obes. (Lond.) 39(7), 1109–1113 (2015)CrossRefGoogle Scholar
  23. 23.
    N. Jaradat, A.N. Zaid, F. Hussein, M. Zaqzouq, H. Aljammal, O. Ayesh, Anti-lipase potential of the organic and aqueous extracts of ten traditional edible and medicinal plants in palestine; a comparison study with orlistat. Medicine. 4(4), 89 (2017)Google Scholar
  24. 24.
    J.M. Milesn, L. Leiter, P. Hollander, T. Wadden, J.W. Anderson, M. Doyle, J. Foreyt, L. Aronne, S. Klein, Effect of orlistat in overweight and obese patients with type 2 diabetes treated with metformin. Diabetes Care. 25(7), 1123–1128 (2002). CrossRefGoogle Scholar
  25. 25.
    C.E. McCrea, S.G. West, P.M. Kris-Etherton, J.D. Lambert, T.L. Gaugler, D.L. Teeter, K.A. Sauder, Y. Gu, S.L. Glisan, A.C. Skulas-Ray, Effects of culinary spices and psychological stress on postprandial lipemia and lipase activity: results of a randomized crossover study and in vitro experiments. J. Transl. Med 13, 7 (2015)CrossRefGoogle Scholar
  26. 26.
    S.M. Mousavi, J. Rahmani, H. Kord-Varkaneh, A. Sheikhi, B. Larijani, A. Esmaillzadeh, Cinnamon supplementation positively affects obesity: a systematic review and dose-response meta-analysis of randomized controlled trials. Clin. Nutr. pii:S0261-5614(19)30071-8 (2019). [Epub ahead of print]
  27. 27.
    P. Kumar, S. Arora, Orlistat in polycystic ovarian syndrome reduces weight with improvement in lipid profile and pregnancy rates. J. Hum. Reprod. Sci. 7(4), 255–261 (2014)CrossRefGoogle Scholar
  28. 28.
    P. Azimi, R. Ghiasvand, A. Feizi, M. Hariri, B. Abbasi, Effects of cinnamon, cardamom, saffron,and ginger consumption on markers of glycemic control, lipid profile, oxidative stress, and inflammation in type 2 diabetes patients. Rev. Diabet. Stud. 11(3–4), 258–266 (2014)CrossRefGoogle Scholar
  29. 29.
    A.B. Medagama, The glycaemic outcomes of cinnamon, a review of the experimental evidence and clinical trials. Nutr. J. 14, 108 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    V. Salem, C. Izzi-Engbeaya, C. Coello, D.B. Thomas, E.S. Chambers, A.N. Comninos, A. Buckley, Z. Win, A. Al-Nahhas, E.A. Rabiner, R.N. Gunn, H. Budge, M.E. Symonds, S.R. Bloom, T.M. Tan, W.S. Dhillo, Glucagon increases energy expenditure independently of brown adipose tissue activation in humans. Diabetes Obes. Metab. 18(1), 72–81 (2016)CrossRefGoogle Scholar
  31. 31.
    G. Eisenhofer, A. Aneman, P. Friberg, D. Hooper, L. Fåndriks, H. Lonroth, B. Hunyady, E. Mezey, Substantial production of dopamine in the human gastrointestinal tract. J. Clin. Endocrinol. Metab. 82(11), 3864–3871 (1997)CrossRefGoogle Scholar
  32. 32.
    K. Blum, P.K. Thanos, M.S. Gold, Dopamine and glucose, obesity, and reward deficiency syndrome. Front Psychol. 5, 919 (2014). CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    A. Maffei, A.M. Segal, J.C. Alvarez-Perez, A. Garcia-Ocaña, P.E. Harris, Anti-incretin, anti-proliferative action of dopamine on β-cells. Mol. Endocrinol. 29(4), 542–557 (2015)CrossRefGoogle Scholar
  34. 34.
    M. Hermanussen, A.P. García, M. Sunder, M. Voigt, V. Salazar, J.A. Tresguerres, Obesity, voracity, and short stature: the impact of glutamate on the regulation of appetite. Eur. J. Clin. Nutr. 60(1), 25–31 (2006)CrossRefGoogle Scholar
  35. 35.
    K. Conde, C. Fabelo, W.C. Krause, R. Propst, J. Goethel, D. Fischer, J. Hur, C. Meza, H.A. Ingraham, E.J. Wagner, Testosterone rapidly augments retrograde endocannabinoid signaling in proopiomelanocortin neurons to suppress glutamatergic input from steroidogenic factor 1 neurons via upregulation of diacylglycerol lipase-α. Neuroendocrinology 105(4), 341–356 (2017)CrossRefGoogle Scholar
  36. 36.
    C.F. Moore, V. Sabino, P. Cottone, Trace amine associated receptor 1 (TAAR1) modulation of food reward. Front Pharmacol. 9, 129 (2018)CrossRefGoogle Scholar
  37. 37.
    K.K. Modi, S.B. Rangasamy, S. Dasarathi, A. Roy, K. Pahan, Cinnamon converts poor learning mice to good learners: implications for memory improvement. J. Neuroimmune Pharm. 11(4), 693–707 (2016)CrossRefGoogle Scholar
  38. 38.
    C.C. Tsai, I.M. Liu, J.T. Cheng, Stimulatory effect of trans-cinnamaldehyde on norepinephrine secretion in cultured pheochromocytoma (PC-12) cells. Acta Pharm. Sin. 21(12), 1174–1178 (2000)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biochemistry Department, Faculty of PharmacyTanta UniversityTantaEgypt
  2. 2.Clinical Pharmacy Department, Faculty of PharmacyDelta University for Science and TechnologyGamasaaEgypt
  3. 3.Biochemistry Department, Faculty of PharmacyDelta University for Science and TechnologyGamasaaEgypt

Personalised recommendations