Association of subclinical thyroid dysfunction with bone mineral density and fracture: a meta-analysis of prospective cohort studies
- 32 Downloads
Abstract
Purpose
To comprehensively investigate the associations of subclinical thyroid dysfunction with BMD and fractures at various sites.
Methods
Comprehensive electronic and manual searches of databases were systematically conducted to identify prospective cohort studies from the inception of the databases to May 2019. The summary results for fractures and BMDs at various sites were calculated by relative risks (RRs) and weighted mean differences (WMDs) with corresponding 95% confidence intervals (CIs) using the random-effects model.
Results
Seventeen prospective cohorts from 24 studies were identified and 313,557 individuals were recruited in a final analysis. The summary RR indicated that subclinical hyperthyroidism was associated with an increased risk of any fracture (RR, 1.17; 95% CI, 1.08–1.26; P < 0.001), hip fracture (RR, 1.27; 95% CI, 1.09–1.48; P = 0.003), spine fracture (RR, 1.97; 95% CI, 1.31–2.97; P = 0.001), and non-spine fracture (RR, 1.19; 95% CI, 1.04–1.37; P = 0.014). However, there were no significant associations of subclinical hypothyroidism with the risk of any fractures (P = 0.166), hip fracture (P = 0.068), spine fracture (P = 0.818), and non-spine fracture (P = 0.277). Finally, subclinical hyperthyroidism was associated with lower distal forearm BMD in women, and ultradistal forearm BMD in both men and women, whereas subclinical hypothyroidism was associated with higher femur neck BMD in women.
Conclusion
Subclinical hyperthyroidism could induce additional risk on fractures at any, hip, spine, and non-spine, whereas subclinical hypothyroidism did not have any impact on fractures. Moreover, BMD at the lower distal and ultradistal forearms might be affected by subclinical hyperthyroidism, and higher femur neck BMD could be affected by subclinical hypothyroidism.
Keywords
Subclinical thyroid dysfunction Bone mineral density Fracture Meta-analysisNotes
Acknowledgements
This work was supported by the fund of Pudong New Area Health System of Shanghai (grant numbers PWZzb2017-22, PWZxk2017-07).
Funding
This study was funded by Pudong New Area Health System of Shanghai (grant numbers PWZzb2017-22, PWZxk2017-07).
Author contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by H.Z., J.Z., J.W., and X.Z. The first draft of the manuscript was written by H.Z. and M.G., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Compliance with ethical standards
Conflict of interest
The authors declare that they have no conflict of interest.
Supplementary material
References
- 1.O. Johnell, J.A. Kanis, A. Oden, I. Sernbo, I. Redlund-Johnell, C. Petterson, C. De Laet, B. Jonsson, Mortality after osteoporotic fractures. Osteoporos. Int 15(1), 38–42 (2004). https://doi.org/10.1007/s00198-003-1490-4 CrossRefPubMedGoogle Scholar
- 2.A.N. Tosteson, S.E. Gabriel, M.R. Grove, M.M. Moncur, T.S. Kneeland, L.J. Melton, 3rd: Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos. Int 12(12), 1042–1049 (2001)CrossRefGoogle Scholar
- 3.H.X. Jiang, S.R. Majumdar, D.A. Dick, M. Moreau, J. Raso, D.D. Otto, D.W. Johnston, Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J. Bone Min. Res 20(3), 494–500 (2005). https://doi.org/10.1359/jbmr.041133 CrossRefGoogle Scholar
- 4.N.O. Foundation. America’s Bone Health: the State of Osteoporosis and Low Bone Mass in Our Nation. (National Osteoporosis Foundation, Washington, DC, 2002) pp. 1–55Google Scholar
- 5.P. Vestergaard, L. Mosekilde, Hyperthyroidism, bone mineral, and fracture risk–a meta-analysis. Thyroid 13(6), 585–593 (2003). https://doi.org/10.1089/105072503322238854 CrossRefPubMedGoogle Scholar
- 6.J.G. Hollowell, N.W. Staehling, W.D. Flanders, W.H. Hannon, E.W. Gunter, C.A. Spencer, L.E. Braverman, Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87(2), 489–499 (2002). https://doi.org/10.1210/jcem.87.2.8182 CrossRefPubMedGoogle Scholar
- 7.K. Takeda, M. Mishiba, H. Sugiura, A. Nakajima, M. Kohama, S. Hiramatsu, Evaluated reference intervals for serum free thyroxine and thyrotropin using the conventional outliner rejection test without regard to presence of thyroid antibodies and prevalence of thyroid dysfunction in Japanese subjects. Endocr. J. 56(9), 1059–1066 (2009)CrossRefGoogle Scholar
- 8.G. Mazziotti, T. Porcelli, I. Patelli, P.P. Vescovi, A. Giustina, T.S.H. Serum, values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone 46(3), 747–751 (2010). https://doi.org/10.1016/j.bone.2009.10.031 CrossRefPubMedGoogle Scholar
- 9.Z. Yan, H. Huang, J. Li, J. Wang, Relationship between subclinical thyroid dysfunction and the risk of fracture: a meta-analysis of prospective cohort studies. Osteoporos. Int 27(1), 115–125 (2016). https://doi.org/10.1007/s00198-015-3221-z CrossRefPubMedGoogle Scholar
- 10.C.E. Aubert, C. Floriani, D.C. Bauer, B.R. da Costa, D. Segna, M.R. Blum, T.H. Collet, H.A. Fink, A.R. Cappola, L. Syrogiannouli, R.P. Peeters, B.O. Asvold, W.P.J. den Elzen, R.N. Luben, A.P. Bremner, A. Gogakos, R. Eastell, P.M. Kearney, M. Hoff, E. Le Blanc, G. Ceresini, F. Rivadeneira, A.G. Uitterlinden, K.T. Khaw, A. Langhammer, D.J. Stott, R.G.J. Westendorp, L. Ferrucci, G.R. Williams, J. Gussekloo, J.P. Walsh, D. Aujesky, N. Rodondi, Thyroid function tests in the reference range and fracture: individual participant analysis of prospective cohorts. J. Clin. Endocrinol. Metab. 102(8), 2719–2728 (2017). https://doi.org/10.1210/jc.2017-00294 CrossRefPubMedPubMedCentralGoogle Scholar
- 11.M.R. Blum, D.C. Bauer, T.H. Collet, H.A. Fink, A.R. Cappola, B.R. da Costa, C.D. Wirth, R.P. Peeters, B.O. Asvold, W.P. den Elzen, R.N. Luben, M. Imaizumi, A.P. Bremner, A. Gogakos, R. Eastell, P.M. Kearney, E.S. Strotmeyer, E.R. Wallace, M. Hoff, G. Ceresini, F. Rivadeneira, A.G. Uitterlinden, D.J. Stott, R.G. Westendorp, K.T. Khaw, A. Langhammer, L. Ferrucci, J. Gussekloo, G.R. Williams, J.P. Walsh, P. Juni, D. Aujesky, N. Rodondi, Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313(20), 2055–2065 (2015). https://doi.org/10.1001/jama.2015.5161 CrossRefPubMedPubMedCentralGoogle Scholar
- 12.D. Segna, D.C. Bauer, M. Feller, C. Schneider, H.A. Fink, C.E. Aubert, T.H. Collet, B.R. da Costa, K. Fischer, R.P. Peeters, A.R. Cappola, M.R. Blum, H.A. van Dorland, J. Robbins, K. Naylor, R. Eastell, A.G. Uitterlinden, F. Rivadeneira Ramirez, A. Gogakos, J. Gussekloo, G.R. Williams, A. Schwartz, J.A. Cauley, D.A. Aujesky, H.A. Bischoff-Ferrari, N. Rodondi, Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts. J. Intern. Med. 283(1), 56–72 (2018). https://doi.org/10.1111/joim.12688 CrossRefPubMedGoogle Scholar
- 13.C.D. Wirth, M.R. Blum, B.R. da Costa, C. Baumgartner, T.H. Collet, M. Medici, R.P. Peeters, D. Aujesky, D.C. Bauer, N. Rodondi, Subclinical thyroid dysfunction and the risk for fractures: a systematic review and meta-analysis. Ann. Intern. Med. 161(3), 189–199 (2014). https://doi.org/10.7326/m14-0125 CrossRefPubMedPubMedCentralGoogle Scholar
- 14.R. Yang, L. Yao, Y. Fang, J. Sun, T. Guo, K. Yang, L. Tian, The relationship between subclinical thyroid dysfunction and the risk of fracture or low bone mineral density: a systematic review and meta-analysis of cohort studies. J. Bone Min. Metab. 36(2), 209–220 (2018). https://doi.org/10.1007/s00774-017-0828-5 CrossRefGoogle Scholar
- 15.D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097 (2009). https://doi.org/10.1371/journal.pmed.1000097 CrossRefPubMedPubMedCentralGoogle Scholar
- 16.G. Wells, B. Shea, D. O’Connell, The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses. Ottawa (ON). http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (2009)
- 17.R. DerSimonian, N. Laird, Meta-analysis in clinical trials. Controlled Clin. trials 7(3), 177–188 (1986)CrossRefGoogle Scholar
- 18.A.E. Ades, G. Lu, J.P. Higgins, The interpretation of random-effects meta-analysis in decision models. Medical decision making: an international journal of the Society for. Med. Decis. Mak. 25(6), 646–654 (2005). https://doi.org/10.1177/0272989x05282643 CrossRefGoogle Scholar
- 19.J.J. Deeks, J.P. Higgins, D.G. Altman, Analysing data and undertaking meta‐analyses. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series, 243–296 (2008)Google Scholar
- 20.J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring inconsistency in meta-analyses. BMJ (Clin. Res. ed.) 327(7414), 557–560 (2003). https://doi.org/10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
- 21.A. Tobias, Assessing the influence of a single study in the meta-analysis estimate. Stata Tech. Bull. 47, 15–17 (1999)Google Scholar
- 22.D.G. Altman, J.M. Bland, Interaction revisited: the difference between two estimates. BMJ (Clin. Res. ed.) 326(7382), 219 (2003). https://doi.org/10.1136/bmj.326.7382.219 CrossRefGoogle Scholar
- 23.M. Egger, G. Davey Smith, M. Schneider, C. Minder, Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin. Res. ed.) 315(7109), 629–634 (1997). https://doi.org/10.1136/bmj.315.7109.629 CrossRefGoogle Scholar
- 24.C.B. Begg, M. Mazumdar, Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4), 1088–1101 (1994)CrossRefGoogle Scholar
- 25.D.C. Bauer, B. Ettinger, M.C. Nevitt, K.L. Stone, Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134(7), 561–568 (2001). https://doi.org/10.7326/0003-4819-134-7-200104030-00009 CrossRefPubMedGoogle Scholar
- 26.M. Imaizumi, M. Akahoshi, S. Ichimaru, E. Nakashima, A. Hida, M. Soda, T. Usa, K. Ashizawa, N. Yokoyama, R. Maeda, S. Nagataki, K. Eguchi, Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 89(7), 3365–3370 (2004). https://doi.org/10.1210/jc.2003-031089 CrossRefPubMedGoogle Scholar
- 27.J. Gussekloo, E. van Exel, A.J. de Craen, A.E. Meinders, M. Frolich, R.G. Westendorp, Thyroid status, disability and cognitive function, and survival in old age. JAMA 292(21), 2591–2599 (2004). https://doi.org/10.1001/jama.292.21.2591 CrossRefPubMedGoogle Scholar
- 28.N. Rodondi, A.B. Newman, E. Vittinghoff, N. de Rekeneire, S. Satterfield, T.B. Harris, D.C. Bauer, Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165(21), 2460–2466 (2005). https://doi.org/10.1001/archinte.165.21.2460 CrossRefPubMedGoogle Scholar
- 29.K.E. Barbour, J.M. Zmuda, R. Boudreau, E.S. Strotmeyer, M.J. Horwitz, R.W. Evans, A.M. Kanaya, T.B. Harris, J.A. Cauley, The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos. Int 23(6), 1699–1710 (2012). https://doi.org/10.1007/s00198-011-1768-x CrossRefPubMedGoogle Scholar
- 30.J.P. Walsh, A.P. Bremner, M.K. Bulsara, P. O’Leary, P.J. Leedman, P. Feddema, V. Michelangeli, Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med. 165(21), 2467–2472 (2005). https://doi.org/10.1001/archinte.165.21.2467 CrossRefPubMedGoogle Scholar
- 31.W.M. van der Deure, A.G. Uitterlinden, A. Hofman, F. Rivadeneira, H.A. Pols, R.P. Peeters, T.J. Visser, Effects of serum TSH and FT4 levels and the TSHR-Asp727Glu polymorphism on bone: the Rotterdam Study. Clin. Endocrinol. (Oxf.) 68(2), 175–181 (2008). https://doi.org/10.1111/j.1365-2265.2007.03016.x CrossRefGoogle Scholar
- 32.A. Hofman, S. Darwish Murad, C.M. van Duijn, O.H. Franco, A. Goedegebure, M.A. Ikram, C.C. Klaver, T.E. Nijsten, R.P. Peeters, B.H. Stricker, H.W. Tiemeier, A.G. Uitterlinden, M.W. Vernooij, The Rotterdam Study: 2014 objectives and design update. Eur. J. Epidemiol. 28(11), 889–926 (2013). https://doi.org/10.1007/s10654-013-9866-z CrossRefPubMedPubMedCentralGoogle Scholar
- 33.A. Hofman, G.G. Brusselle, S. Darwish Murad, C.M. van Duijn, O.H. Franco, A. Goedegebure, M.A. Ikram, C.C. Klaver, T.E. Nijsten, R.P. Peeters, B.H. Stricker, H.W. Tiemeier, A.G. Uitterlinden, M.W. Vernooij, The Rotterdam Study: 2016 objectives and design update. Eur. J. Epidemiol. 30(8), 661–708 (2015). https://doi.org/10.1007/s10654-015-0082-x CrossRefPubMedPubMedCentralGoogle Scholar
- 34.G. Grimnes, N. Emaus, R.M. Joakimsen, Y. Figenschau, R. Jorde, The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Tromso study. Thyroid 18(11), 1147–1155 (2008). https://doi.org/10.1089/thy.2008.0158 CrossRefPubMedGoogle Scholar
- 35.J. Finigan, D.M. Greenfield, A. Blumsohn, R.A. Hannon, N.F. Peel, G. Jiang, R. Eastell, Risk factors for vertebral and nonvertebral fracture over 10 years: a population-based study in women. J. Bone Min. Res 23(1), 75–85 (2008). https://doi.org/10.1359/jbmr.070814 CrossRefGoogle Scholar
- 36.R.W. Flynn, S.R. Bonellie, R.T. Jung, T.M. MacDonald, A.D. Morris, G.P. Leese, Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J. Clin. Endocrinol. Metab. 95(1), 186–193 (2010). https://doi.org/10.1210/jc.2009-1625 CrossRefPubMedGoogle Scholar
- 37.T. Vadiveloo, P.T. Donnan, L. Cochrane, G.P. Leese, The Thyroid Epidemiology, Audit, and Research Study (TEARS): morbidity in patients with endogenous subclinical hyperthyroidism. J. Clin. Endocrinol. Metab. 96(5), 1344–1351 (2011). https://doi.org/10.1210/jc.2010-2693 CrossRefPubMedGoogle Scholar
- 38.J.S. Lee, P. Buzkova, H.A. Fink, J. Vu, L. Carbone, Z. Chen, J. Cauley, D.C. Bauer, A.R. Cappola, J. Robbins, Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch. Intern. Med. 170(21), 1876–1883 (2010). https://doi.org/10.1001/archinternmed.2010.424 CrossRefPubMedPubMedCentralGoogle Scholar
- 39.M.C. Garin, A.M. Arnold, J.S. Lee, J. Robbins, A.R. Cappola, Subclinical thyroid dysfunction and hip fracture and bone mineral density in older adults: the cardiovascular health study. J. Clin. Endocrinol. Metab. 99(8), 2657–2664 (2014). https://doi.org/10.1210/jc.2014-1051 CrossRefPubMedPubMedCentralGoogle Scholar
- 40.S.M. Boekholdt, S.M. Titan, W.M. Wiersinga, K. Chatterjee, D.C. Basart, R. Luben, N.J. Wareham, K.T. Khaw, Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clin. Endocrinol. (Oxf.) 72(3), 404–410 (2010). https://doi.org/10.1111/j.1365-2265.2009.03640.x CrossRefGoogle Scholar
- 41.E. Murphy, C.C. Gluer, D.M. Reid, D. Felsenberg, C. Roux, R. Eastell, G.R. Williams, Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 95(7), 3173–3181 (2010). https://doi.org/10.1210/jc.2009-2630 CrossRefPubMedGoogle Scholar
- 42.D. Nanchen, J. Gussekloo, R.G. Westendorp, D.J. Stott, J.W. Jukema, S. Trompet, I. Ford, P. Welsh, N. Sattar, P.W. Macfarlane, S.P. Mooijaart, N. Rodondi, A.J. de Craen, Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. J. Clin. Endocrinol. Metab. 97(3), 852–861 (2012). https://doi.org/10.1210/jc.2011-1978 CrossRefPubMedGoogle Scholar
- 43.A. Svare, T.I. Nilsen, B.O. Asvold, S. Forsmo, B. Schei, T. Bjoro, A. Langhammer, Does thyroid function influence fracture risk? Prospective data from the HUNT2 study, Norway. Eur. J. Endocrinol. 169(6), 845–852 (2013). https://doi.org/10.1530/eje-13-0546 CrossRefPubMedGoogle Scholar
- 44.A.C. Waring, S. Harrison, H.A. Fink, M.H. Samuels, P.M. Cawthon, J.M. Zmuda, E.S. Orwoll, D.C. Bauer, A prospective study of thyroid function, bone loss, and fractures in older men: The MrOS study. J. Bone Min. Res 28(3), 472–479 (2013). https://doi.org/10.1002/jbmr.1774 CrossRefGoogle Scholar
- 45.J.A. Cauley, P.M. Cawthon, K.E. Peters, S.R. Cummings, K.E. Ensrud, D.C. Bauer, B.C. Taylor, J.M. Shikany, A.R. Hoffman, N.E. Lane, D.M. Kado, M.L. Stefanick, E.S. Orwoll, Risk factors for hip fracture in older men: the osteoporotic fractures in men study (MrOS). J. Bone Min. Res 31(10), 1810–1819 (2016). https://doi.org/10.1002/jbmr.2836 CrossRefGoogle Scholar
- 46.G. Ceresini, G.P. Ceda, F. Lauretani, M. Maggio, E. Usberti, M. Marina, S. Bandinelli, J.M. Guralnik, G. Valenti, L. Ferrucci, Thyroid status and 6-year mortality in elderly people living in a mildly iodine-deficient area: the aging in the Chianti Area Study. J. Am. Geriatr. Soc. 61(6), 868–874 (2013). https://doi.org/10.1111/jgs.12267 CrossRefPubMedPubMedCentralGoogle Scholar
- 47.B. Abrahamsen, H.L. Jorgensen, A.S. Laulund, M. Nybo, T.H. Brix, L. Hegedus, Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J. Bone Min. Res 29(9), 2040–2050 (2014). https://doi.org/10.1002/jbmr.2244 CrossRefGoogle Scholar
- 48.B. Abrahamsen, H.L. Jorgensen, A.S. Laulund, M. Nybo, D.C. Bauer, T.H. Brix, L. Hegedus, The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J. Bone Min. Res 30(5), 898–905 (2015). https://doi.org/10.1002/jbmr.2416 CrossRefGoogle Scholar
- 49.D.S. Cooper, B. Biondi, Subclinical thyroid disease. Lancet (Lond., Engl.) 379(9821), 1142–1154 (2012). https://doi.org/10.1016/s0140-6736(11)60276-6 CrossRefGoogle Scholar
- 50.R. Baliram, L. Sun, J. Cao, J. Li, R. Latif, A.K. Huber, T. Yuen, H.C. Blair, M. Zaidi, T.F. Davies, Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Investig. 122(10), 3737–3741 (2012). https://doi.org/10.1172/jci63948 CrossRefPubMedGoogle Scholar
- 51.M.D. Brennan, C. Powell, K.R. Kaufman, P.C. Sun, R.S. Bahn, K.S. Nair, The impact of overt and subclinical hyperthyroidism on skeletal muscle. Thyroid 16(4), 375–380 (2006). https://doi.org/10.1089/thy.2006.16.375 CrossRefPubMedGoogle Scholar
- 52.A.D. Toft, Clinical practice. Subclinical hyperthyroidism. New Engl. J. Med. 345(7), 512–516 (2001). https://doi.org/10.1056/NEJMcp010145 CrossRefPubMedGoogle Scholar
- 53.B. Biondi, E.A. Palmieri, M. Klain, M. Schlumberger, S. Filetti, G. Lombardi, Subclinical hyperthyroidism: clinical features and treatment options. Eur. J. Endocrinol. 152(1), 1–9 (2005)CrossRefGoogle Scholar
- 54.A. Bertoli, A. Fusco, A. Andreoli, A. Magnani, A. Tulli, D. Lauro, A. De Lorenzo, Effect of subclinical hypothyroidism and obesity on whole-body and regional bone mineral content. Horm. Res 57(3-4), 79–84 (2002). https://doi.org/10.1159/000057956 CrossRefPubMedGoogle Scholar
- 55.B. Biondi, Natural history, diagnosis and management of subclinical thyroid dysfunction. Best. Pr. Res Clin. Endocrinol. Metab. 26(4), 431–446 (2012). https://doi.org/10.1016/j.beem.2011.12.004 CrossRefGoogle Scholar