Advertisement

Endocrine

pp 1–14 | Cite as

Association of subclinical thyroid dysfunction with bone mineral density and fracture: a meta-analysis of prospective cohort studies

  • Hongling Zhu
  • Jichen Zhang
  • Jingnan Wang
  • Xuemei Zhao
  • Mingjun GuEmail author
Original Article
  • 32 Downloads

Abstract

Purpose

To comprehensively investigate the associations of subclinical thyroid dysfunction with BMD and fractures at various sites.

Methods

Comprehensive electronic and manual searches of databases were systematically conducted to identify prospective cohort studies from the inception of the databases to May 2019. The summary results for fractures and BMDs at various sites were calculated by relative risks (RRs) and weighted mean differences (WMDs) with corresponding 95% confidence intervals (CIs) using the random-effects model.

Results

Seventeen prospective cohorts from 24 studies were identified and 313,557 individuals were recruited in a final analysis. The summary RR indicated that subclinical hyperthyroidism was associated with an increased risk of any fracture (RR, 1.17; 95% CI, 1.08–1.26; P < 0.001), hip fracture (RR, 1.27; 95% CI, 1.09–1.48; P = 0.003), spine fracture (RR, 1.97; 95% CI, 1.31–2.97; P = 0.001), and non-spine fracture (RR, 1.19; 95% CI, 1.04–1.37; P = 0.014). However, there were no significant associations of subclinical hypothyroidism with the risk of any fractures (P = 0.166), hip fracture (P = 0.068), spine fracture (P = 0.818), and non-spine fracture (P = 0.277). Finally, subclinical hyperthyroidism was associated with lower distal forearm BMD in women, and ultradistal forearm BMD in both men and women, whereas subclinical hypothyroidism was associated with higher femur neck BMD in women.

Conclusion

Subclinical hyperthyroidism could induce additional risk on fractures at any, hip, spine, and non-spine, whereas subclinical hypothyroidism did not have any impact on fractures. Moreover, BMD at the lower distal and ultradistal forearms might be affected by subclinical hyperthyroidism, and higher femur neck BMD could be affected by subclinical hypothyroidism.

Keywords

Subclinical thyroid dysfunction Bone mineral density Fracture Meta-analysis 

Notes

Acknowledgements

This work was supported by the fund of Pudong New Area Health System of Shanghai (grant numbers PWZzb2017-22, PWZxk2017-07).

Funding

This study was funded by Pudong New Area Health System of Shanghai (grant numbers PWZzb2017-22, PWZxk2017-07).

Author contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by H.Z., J.Z., J.W., and X.Z. The first draft of the manuscript was written by H.Z. and M.G., and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12020_2019_2110_MOESM1_ESM.docx (828 kb)
Supplementary Information
12020_2019_2110_MOESM2_ESM.docx (811 kb)
Supplementary Information
12020_2019_2110_MOESM3_ESM.docx (22 kb)
Supplementary Information
12020_2019_2110_MOESM4_ESM.docx (18 kb)
Supplementary Information

References

  1. 1.
    O. Johnell, J.A. Kanis, A. Oden, I. Sernbo, I. Redlund-Johnell, C. Petterson, C. De Laet, B. Jonsson, Mortality after osteoporotic fractures. Osteoporos. Int 15(1), 38–42 (2004).  https://doi.org/10.1007/s00198-003-1490-4 CrossRefPubMedGoogle Scholar
  2. 2.
    A.N. Tosteson, S.E. Gabriel, M.R. Grove, M.M. Moncur, T.S. Kneeland, L.J. Melton, 3rd: Impact of hip and vertebral fractures on quality-adjusted life years. Osteoporos. Int 12(12), 1042–1049 (2001)CrossRefGoogle Scholar
  3. 3.
    H.X. Jiang, S.R. Majumdar, D.A. Dick, M. Moreau, J. Raso, D.D. Otto, D.W. Johnston, Development and initial validation of a risk score for predicting in-hospital and 1-year mortality in patients with hip fractures. J. Bone Min. Res 20(3), 494–500 (2005).  https://doi.org/10.1359/jbmr.041133 CrossRefGoogle Scholar
  4. 4.
    N.O. Foundation. America’s Bone Health: the State of Osteoporosis and Low Bone Mass in Our Nation. (National Osteoporosis Foundation, Washington, DC, 2002) pp. 1–55Google Scholar
  5. 5.
    P. Vestergaard, L. Mosekilde, Hyperthyroidism, bone mineral, and fracture risk–a meta-analysis. Thyroid 13(6), 585–593 (2003).  https://doi.org/10.1089/105072503322238854 CrossRefPubMedGoogle Scholar
  6. 6.
    J.G. Hollowell, N.W. Staehling, W.D. Flanders, W.H. Hannon, E.W. Gunter, C.A. Spencer, L.E. Braverman, Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J. Clin. Endocrinol. Metab. 87(2), 489–499 (2002).  https://doi.org/10.1210/jcem.87.2.8182 CrossRefPubMedGoogle Scholar
  7. 7.
    K. Takeda, M. Mishiba, H. Sugiura, A. Nakajima, M. Kohama, S. Hiramatsu, Evaluated reference intervals for serum free thyroxine and thyrotropin using the conventional outliner rejection test without regard to presence of thyroid antibodies and prevalence of thyroid dysfunction in Japanese subjects. Endocr. J. 56(9), 1059–1066 (2009)CrossRefGoogle Scholar
  8. 8.
    G. Mazziotti, T. Porcelli, I. Patelli, P.P. Vescovi, A. Giustina, T.S.H. Serum, values and risk of vertebral fractures in euthyroid post-menopausal women with low bone mineral density. Bone 46(3), 747–751 (2010).  https://doi.org/10.1016/j.bone.2009.10.031 CrossRefPubMedGoogle Scholar
  9. 9.
    Z. Yan, H. Huang, J. Li, J. Wang, Relationship between subclinical thyroid dysfunction and the risk of fracture: a meta-analysis of prospective cohort studies. Osteoporos. Int 27(1), 115–125 (2016).  https://doi.org/10.1007/s00198-015-3221-z CrossRefPubMedGoogle Scholar
  10. 10.
    C.E. Aubert, C. Floriani, D.C. Bauer, B.R. da Costa, D. Segna, M.R. Blum, T.H. Collet, H.A. Fink, A.R. Cappola, L. Syrogiannouli, R.P. Peeters, B.O. Asvold, W.P.J. den Elzen, R.N. Luben, A.P. Bremner, A. Gogakos, R. Eastell, P.M. Kearney, M. Hoff, E. Le Blanc, G. Ceresini, F. Rivadeneira, A.G. Uitterlinden, K.T. Khaw, A. Langhammer, D.J. Stott, R.G.J. Westendorp, L. Ferrucci, G.R. Williams, J. Gussekloo, J.P. Walsh, D. Aujesky, N. Rodondi, Thyroid function tests in the reference range and fracture: individual participant analysis of prospective cohorts. J. Clin. Endocrinol. Metab. 102(8), 2719–2728 (2017).  https://doi.org/10.1210/jc.2017-00294 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    M.R. Blum, D.C. Bauer, T.H. Collet, H.A. Fink, A.R. Cappola, B.R. da Costa, C.D. Wirth, R.P. Peeters, B.O. Asvold, W.P. den Elzen, R.N. Luben, M. Imaizumi, A.P. Bremner, A. Gogakos, R. Eastell, P.M. Kearney, E.S. Strotmeyer, E.R. Wallace, M. Hoff, G. Ceresini, F. Rivadeneira, A.G. Uitterlinden, D.J. Stott, R.G. Westendorp, K.T. Khaw, A. Langhammer, L. Ferrucci, J. Gussekloo, G.R. Williams, J.P. Walsh, P. Juni, D. Aujesky, N. Rodondi, Subclinical thyroid dysfunction and fracture risk: a meta-analysis. JAMA 313(20), 2055–2065 (2015).  https://doi.org/10.1001/jama.2015.5161 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    D. Segna, D.C. Bauer, M. Feller, C. Schneider, H.A. Fink, C.E. Aubert, T.H. Collet, B.R. da Costa, K. Fischer, R.P. Peeters, A.R. Cappola, M.R. Blum, H.A. van Dorland, J. Robbins, K. Naylor, R. Eastell, A.G. Uitterlinden, F. Rivadeneira Ramirez, A. Gogakos, J. Gussekloo, G.R. Williams, A. Schwartz, J.A. Cauley, D.A. Aujesky, H.A. Bischoff-Ferrari, N. Rodondi, Association between subclinical thyroid dysfunction and change in bone mineral density in prospective cohorts. J. Intern. Med. 283(1), 56–72 (2018).  https://doi.org/10.1111/joim.12688 CrossRefPubMedGoogle Scholar
  13. 13.
    C.D. Wirth, M.R. Blum, B.R. da Costa, C. Baumgartner, T.H. Collet, M. Medici, R.P. Peeters, D. Aujesky, D.C. Bauer, N. Rodondi, Subclinical thyroid dysfunction and the risk for fractures: a systematic review and meta-analysis. Ann. Intern. Med. 161(3), 189–199 (2014).  https://doi.org/10.7326/m14-0125 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    R. Yang, L. Yao, Y. Fang, J. Sun, T. Guo, K. Yang, L. Tian, The relationship between subclinical thyroid dysfunction and the risk of fracture or low bone mineral density: a systematic review and meta-analysis of cohort studies. J. Bone Min. Metab. 36(2), 209–220 (2018).  https://doi.org/10.1007/s00774-017-0828-5 CrossRefGoogle Scholar
  15. 15.
    D. Moher, A. Liberati, J. Tetzlaff, D.G. Altman, Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 6(7), e1000097 (2009).  https://doi.org/10.1371/journal.pmed.1000097 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    G. Wells, B. Shea, D. O’Connell, The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-analyses. Ottawa (ON). http://www.ohri.ca/programs/clinical_epidemiology/oxford.htm (2009)
  17. 17.
    R. DerSimonian, N. Laird, Meta-analysis in clinical trials. Controlled Clin. trials 7(3), 177–188 (1986)CrossRefGoogle Scholar
  18. 18.
    A.E. Ades, G. Lu, J.P. Higgins, The interpretation of random-effects meta-analysis in decision models. Medical decision making: an international journal of the Society for. Med. Decis. Mak. 25(6), 646–654 (2005).  https://doi.org/10.1177/0272989x05282643 CrossRefGoogle Scholar
  19. 19.
    J.J. Deeks, J.P. Higgins, D.G. Altman, Analysing data and undertaking meta‐analyses. Cochrane Handbook for Systematic Reviews of Interventions: Cochrane Book Series, 243–296 (2008)Google Scholar
  20. 20.
    J.P. Higgins, S.G. Thompson, J.J. Deeks, D.G. Altman, Measuring inconsistency in meta-analyses. BMJ (Clin. Res. ed.) 327(7414), 557–560 (2003).  https://doi.org/10.1136/bmj.327.7414.557 CrossRefGoogle Scholar
  21. 21.
    A. Tobias, Assessing the influence of a single study in the meta-analysis estimate. Stata Tech. Bull. 47, 15–17 (1999)Google Scholar
  22. 22.
    D.G. Altman, J.M. Bland, Interaction revisited: the difference between two estimates. BMJ (Clin. Res. ed.) 326(7382), 219 (2003).  https://doi.org/10.1136/bmj.326.7382.219 CrossRefGoogle Scholar
  23. 23.
    M. Egger, G. Davey Smith, M. Schneider, C. Minder, Bias in meta-analysis detected by a simple, graphical test. BMJ (Clin. Res. ed.) 315(7109), 629–634 (1997).  https://doi.org/10.1136/bmj.315.7109.629 CrossRefGoogle Scholar
  24. 24.
    C.B. Begg, M. Mazumdar, Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4), 1088–1101 (1994)CrossRefGoogle Scholar
  25. 25.
    D.C. Bauer, B. Ettinger, M.C. Nevitt, K.L. Stone, Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann. Intern. Med. 134(7), 561–568 (2001).  https://doi.org/10.7326/0003-4819-134-7-200104030-00009 CrossRefPubMedGoogle Scholar
  26. 26.
    M. Imaizumi, M. Akahoshi, S. Ichimaru, E. Nakashima, A. Hida, M. Soda, T. Usa, K. Ashizawa, N. Yokoyama, R. Maeda, S. Nagataki, K. Eguchi, Risk for ischemic heart disease and all-cause mortality in subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 89(7), 3365–3370 (2004).  https://doi.org/10.1210/jc.2003-031089 CrossRefPubMedGoogle Scholar
  27. 27.
    J. Gussekloo, E. van Exel, A.J. de Craen, A.E. Meinders, M. Frolich, R.G. Westendorp, Thyroid status, disability and cognitive function, and survival in old age. JAMA 292(21), 2591–2599 (2004).  https://doi.org/10.1001/jama.292.21.2591 CrossRefPubMedGoogle Scholar
  28. 28.
    N. Rodondi, A.B. Newman, E. Vittinghoff, N. de Rekeneire, S. Satterfield, T.B. Harris, D.C. Bauer, Subclinical hypothyroidism and the risk of heart failure, other cardiovascular events, and death. Arch. Intern. Med. 165(21), 2460–2466 (2005).  https://doi.org/10.1001/archinte.165.21.2460 CrossRefPubMedGoogle Scholar
  29. 29.
    K.E. Barbour, J.M. Zmuda, R. Boudreau, E.S. Strotmeyer, M.J. Horwitz, R.W. Evans, A.M. Kanaya, T.B. Harris, J.A. Cauley, The effects of adiponectin and leptin on changes in bone mineral density. Osteoporos. Int 23(6), 1699–1710 (2012).  https://doi.org/10.1007/s00198-011-1768-x CrossRefPubMedGoogle Scholar
  30. 30.
    J.P. Walsh, A.P. Bremner, M.K. Bulsara, P. O’Leary, P.J. Leedman, P. Feddema, V. Michelangeli, Subclinical thyroid dysfunction as a risk factor for cardiovascular disease. Arch. Intern. Med. 165(21), 2467–2472 (2005).  https://doi.org/10.1001/archinte.165.21.2467 CrossRefPubMedGoogle Scholar
  31. 31.
    W.M. van der Deure, A.G. Uitterlinden, A. Hofman, F. Rivadeneira, H.A. Pols, R.P. Peeters, T.J. Visser, Effects of serum TSH and FT4 levels and the TSHR-Asp727Glu polymorphism on bone: the Rotterdam Study. Clin. Endocrinol. (Oxf.) 68(2), 175–181 (2008).  https://doi.org/10.1111/j.1365-2265.2007.03016.x CrossRefGoogle Scholar
  32. 32.
    A. Hofman, S. Darwish Murad, C.M. van Duijn, O.H. Franco, A. Goedegebure, M.A. Ikram, C.C. Klaver, T.E. Nijsten, R.P. Peeters, B.H. Stricker, H.W. Tiemeier, A.G. Uitterlinden, M.W. Vernooij, The Rotterdam Study: 2014 objectives and design update. Eur. J. Epidemiol. 28(11), 889–926 (2013).  https://doi.org/10.1007/s10654-013-9866-z CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    A. Hofman, G.G. Brusselle, S. Darwish Murad, C.M. van Duijn, O.H. Franco, A. Goedegebure, M.A. Ikram, C.C. Klaver, T.E. Nijsten, R.P. Peeters, B.H. Stricker, H.W. Tiemeier, A.G. Uitterlinden, M.W. Vernooij, The Rotterdam Study: 2016 objectives and design update. Eur. J. Epidemiol. 30(8), 661–708 (2015).  https://doi.org/10.1007/s10654-015-0082-x CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    G. Grimnes, N. Emaus, R.M. Joakimsen, Y. Figenschau, R. Jorde, The relationship between serum TSH and bone mineral density in men and postmenopausal women: the Tromso study. Thyroid 18(11), 1147–1155 (2008).  https://doi.org/10.1089/thy.2008.0158 CrossRefPubMedGoogle Scholar
  35. 35.
    J. Finigan, D.M. Greenfield, A. Blumsohn, R.A. Hannon, N.F. Peel, G. Jiang, R. Eastell, Risk factors for vertebral and nonvertebral fracture over 10 years: a population-based study in women. J. Bone Min. Res 23(1), 75–85 (2008).  https://doi.org/10.1359/jbmr.070814 CrossRefGoogle Scholar
  36. 36.
    R.W. Flynn, S.R. Bonellie, R.T. Jung, T.M. MacDonald, A.D. Morris, G.P. Leese, Serum thyroid-stimulating hormone concentration and morbidity from cardiovascular disease and fractures in patients on long-term thyroxine therapy. J. Clin. Endocrinol. Metab. 95(1), 186–193 (2010).  https://doi.org/10.1210/jc.2009-1625 CrossRefPubMedGoogle Scholar
  37. 37.
    T. Vadiveloo, P.T. Donnan, L. Cochrane, G.P. Leese, The Thyroid Epidemiology, Audit, and Research Study (TEARS): morbidity in patients with endogenous subclinical hyperthyroidism. J. Clin. Endocrinol. Metab. 96(5), 1344–1351 (2011).  https://doi.org/10.1210/jc.2010-2693 CrossRefPubMedGoogle Scholar
  38. 38.
    J.S. Lee, P. Buzkova, H.A. Fink, J. Vu, L. Carbone, Z. Chen, J. Cauley, D.C. Bauer, A.R. Cappola, J. Robbins, Subclinical thyroid dysfunction and incident hip fracture in older adults. Arch. Intern. Med. 170(21), 1876–1883 (2010).  https://doi.org/10.1001/archinternmed.2010.424 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    M.C. Garin, A.M. Arnold, J.S. Lee, J. Robbins, A.R. Cappola, Subclinical thyroid dysfunction and hip fracture and bone mineral density in older adults: the cardiovascular health study. J. Clin. Endocrinol. Metab. 99(8), 2657–2664 (2014).  https://doi.org/10.1210/jc.2014-1051 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    S.M. Boekholdt, S.M. Titan, W.M. Wiersinga, K. Chatterjee, D.C. Basart, R. Luben, N.J. Wareham, K.T. Khaw, Initial thyroid status and cardiovascular risk factors: the EPIC-Norfolk prospective population study. Clin. Endocrinol. (Oxf.) 72(3), 404–410 (2010).  https://doi.org/10.1111/j.1365-2265.2009.03640.x CrossRefGoogle Scholar
  41. 41.
    E. Murphy, C.C. Gluer, D.M. Reid, D. Felsenberg, C. Roux, R. Eastell, G.R. Williams, Thyroid function within the upper normal range is associated with reduced bone mineral density and an increased risk of nonvertebral fractures in healthy euthyroid postmenopausal women. J. Clin. Endocrinol. Metab. 95(7), 3173–3181 (2010).  https://doi.org/10.1210/jc.2009-2630 CrossRefPubMedGoogle Scholar
  42. 42.
    D. Nanchen, J. Gussekloo, R.G. Westendorp, D.J. Stott, J.W. Jukema, S. Trompet, I. Ford, P. Welsh, N. Sattar, P.W. Macfarlane, S.P. Mooijaart, N. Rodondi, A.J. de Craen, Subclinical thyroid dysfunction and the risk of heart failure in older persons at high cardiovascular risk. J. Clin. Endocrinol. Metab. 97(3), 852–861 (2012).  https://doi.org/10.1210/jc.2011-1978 CrossRefPubMedGoogle Scholar
  43. 43.
    A. Svare, T.I. Nilsen, B.O. Asvold, S. Forsmo, B. Schei, T. Bjoro, A. Langhammer, Does thyroid function influence fracture risk? Prospective data from the HUNT2 study, Norway. Eur. J. Endocrinol. 169(6), 845–852 (2013).  https://doi.org/10.1530/eje-13-0546 CrossRefPubMedGoogle Scholar
  44. 44.
    A.C. Waring, S. Harrison, H.A. Fink, M.H. Samuels, P.M. Cawthon, J.M. Zmuda, E.S. Orwoll, D.C. Bauer, A prospective study of thyroid function, bone loss, and fractures in older men: The MrOS study. J. Bone Min. Res 28(3), 472–479 (2013).  https://doi.org/10.1002/jbmr.1774 CrossRefGoogle Scholar
  45. 45.
    J.A. Cauley, P.M. Cawthon, K.E. Peters, S.R. Cummings, K.E. Ensrud, D.C. Bauer, B.C. Taylor, J.M. Shikany, A.R. Hoffman, N.E. Lane, D.M. Kado, M.L. Stefanick, E.S. Orwoll, Risk factors for hip fracture in older men: the osteoporotic fractures in men study (MrOS). J. Bone Min. Res 31(10), 1810–1819 (2016).  https://doi.org/10.1002/jbmr.2836 CrossRefGoogle Scholar
  46. 46.
    G. Ceresini, G.P. Ceda, F. Lauretani, M. Maggio, E. Usberti, M. Marina, S. Bandinelli, J.M. Guralnik, G. Valenti, L. Ferrucci, Thyroid status and 6-year mortality in elderly people living in a mildly iodine-deficient area: the aging in the Chianti Area Study. J. Am. Geriatr. Soc. 61(6), 868–874 (2013).  https://doi.org/10.1111/jgs.12267 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    B. Abrahamsen, H.L. Jorgensen, A.S. Laulund, M. Nybo, T.H. Brix, L. Hegedus, Low serum thyrotropin level and duration of suppression as a predictor of major osteoporotic fractures-the OPENTHYRO register cohort. J. Bone Min. Res 29(9), 2040–2050 (2014).  https://doi.org/10.1002/jbmr.2244 CrossRefGoogle Scholar
  48. 48.
    B. Abrahamsen, H.L. Jorgensen, A.S. Laulund, M. Nybo, D.C. Bauer, T.H. Brix, L. Hegedus, The excess risk of major osteoporotic fractures in hypothyroidism is driven by cumulative hyperthyroid as opposed to hypothyroid time: an observational register-based time-resolved cohort analysis. J. Bone Min. Res 30(5), 898–905 (2015).  https://doi.org/10.1002/jbmr.2416 CrossRefGoogle Scholar
  49. 49.
    D.S. Cooper, B. Biondi, Subclinical thyroid disease. Lancet (Lond., Engl.) 379(9821), 1142–1154 (2012).  https://doi.org/10.1016/s0140-6736(11)60276-6 CrossRefGoogle Scholar
  50. 50.
    R. Baliram, L. Sun, J. Cao, J. Li, R. Latif, A.K. Huber, T. Yuen, H.C. Blair, M. Zaidi, T.F. Davies, Hyperthyroid-associated osteoporosis is exacerbated by the loss of TSH signaling. J. Clin. Investig. 122(10), 3737–3741 (2012).  https://doi.org/10.1172/jci63948 CrossRefPubMedGoogle Scholar
  51. 51.
    M.D. Brennan, C. Powell, K.R. Kaufman, P.C. Sun, R.S. Bahn, K.S. Nair, The impact of overt and subclinical hyperthyroidism on skeletal muscle. Thyroid 16(4), 375–380 (2006).  https://doi.org/10.1089/thy.2006.16.375 CrossRefPubMedGoogle Scholar
  52. 52.
    A.D. Toft, Clinical practice. Subclinical hyperthyroidism. New Engl. J. Med. 345(7), 512–516 (2001).  https://doi.org/10.1056/NEJMcp010145 CrossRefPubMedGoogle Scholar
  53. 53.
    B. Biondi, E.A. Palmieri, M. Klain, M. Schlumberger, S. Filetti, G. Lombardi, Subclinical hyperthyroidism: clinical features and treatment options. Eur. J. Endocrinol. 152(1), 1–9 (2005)CrossRefGoogle Scholar
  54. 54.
    A. Bertoli, A. Fusco, A. Andreoli, A. Magnani, A. Tulli, D. Lauro, A. De Lorenzo, Effect of subclinical hypothyroidism and obesity on whole-body and regional bone mineral content. Horm. Res 57(3-4), 79–84 (2002).  https://doi.org/10.1159/000057956 CrossRefPubMedGoogle Scholar
  55. 55.
    B. Biondi, Natural history, diagnosis and management of subclinical thyroid dysfunction. Best. Pr. Res Clin. Endocrinol. Metab. 26(4), 431–446 (2012).  https://doi.org/10.1016/j.beem.2011.12.004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hongling Zhu
    • 1
  • Jichen Zhang
    • 1
  • Jingnan Wang
    • 1
  • Xuemei Zhao
    • 1
  • Mingjun Gu
    • 1
    Email author
  1. 1.Department of Endocrinology, Shanghai Pudong New Area Gongli HospitalSecond Military Medical UniversityShanghaiChina

Personalised recommendations