pp 1–7 | Cite as

A nomogram for predicting the presence of germline mutations in pheochromocytomas and paragangliomas

  • Ting Wei Su
  • Xu Zhong
  • Lei Ye
  • Wei Song
  • Lei Jiang
  • Jing Xie
  • Yiran Jiang
  • Weiwei Zhou
  • Cui Zhang
  • Luming Wu
  • Guang Ning
  • Weiqing WangEmail author
Original Article



Up to 40% of patients with pheochromocytomas or paragangliomas (PPGLs) carry a germline mutation. This study aimed to build a nomogram using clinical information to predict the probability of germline mutation in PPGLs.


The data were collected from 563 patients who were diagnosed with PPGLs between 2002 and 2015. Clinical and pathologic features were assessed with a multivariable logistic regression analysis to predict the presence of germline mutations. A nomogram to predict the probability of germline mutation was constructed with R software. Discrimination and calibration were employed to evaluate the performance of the nomogram.


By multivariate analysis, age at manifestation, bilateral, or multifocal tumors and family history were identified as independent predictors of the presence of any germline mutation. The nomogram was then developed using these three variables. The nomogram showed an area under the receiver operating characteristic curve (AUC) of 0. 841 (95% confidence interval [CI], 0.809–0.871). The calibration plot indicated that the nomogram-predicted probabilities compared very well with the actual probabilities (Hosmer–Lemeshow test: P = 0.888).


The nomogram is a valuable predictive tool for the presence of germline mutations in patients with PPGLs.


Pheochromocytomas Paragangliomas Germline mutation 



This study was supported by the grants from the National Natural Science Foundation of China (81730023). National International Science Cooperation Foundation (2015DFA30560). Science and Technology Commission of Shanghai Municipality (16JC1400803). Shanghai Sailing Program (19YF1429400).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The study was approved by the Ethics Committee of the Ruijin Hospital, Shanghai Jiao Tong University School of Medicine.

Informed consent

All patients gave their written informed consent.

Supplementary material

12020_2019_2075_MOESM1_ESM.xlsx (18 kb)
Supplementary Table 1.


  1. 1.
    L.J. Castro-Vega, C. Lepoutre-Lussey, A.P. Gimenez-Roqueplo, J. Favier, Rethinking pheochromocytomas and paragangliomas from a genomic perspective. Oncogene 35(9), 1080–1089 (2016). CrossRefPubMedGoogle Scholar
  2. 2.
    L. Fishbein, I. Leshchiner, V. Walter, L. Danilova, A.G. Robertson, A.R. Johnson, T.M. Lichtenberg, B.A. Murray, H.K. Ghayee, T. Else, S. Ling, S.R. Jefferys, A.A. de Cubas, B. Wenz, E. Korpershoek, A.L. Amelio, L. Makowski, W.K. Rathmell, A.P. Gimenez-Roqueplo, T.J. Giordano, S.L. Asa, A.S. Tischler; Cancer Genome Atlas Research, N., K. Pacak, K.L. Nathanson, M.D. Wilkerson, Comprehensive molecular characterization of pheochromocytoma and paraganglioma. Cancer Cell 31(2), 181–193 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Y. Qin, L. Yao, E.E. King, K. Buddavarapu, R.E. Lenci, E.S. Chocron, J.D. Lechleiter, M. Sass, N. Aronin, F. Schiavi, F. Boaretto, G. Opocher, R.A. Toledo, S.P. Toledo, C. Stiles, R.C. Aguiar, P.L. Dahia, Germline mutations in TMEM127 confer susceptibility to pheochromocytoma. Nat. Genet. 42(3), 229–233 (2010). CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    I. Comino-Mendez, F.J. Gracia-Aznarez, F. Schiavi, I. Landa, L.J. Leandro-Garcia, R. Leton, E. Honrado, R. Ramos-Medina, D. Caronia, G. Pita, A. Gomez-Grana, A.A. de Cubas, L. Inglada-Perez, A. Maliszewska, E. Taschin, S. Bobisse, G. Pica, P. Loli, R. Hernandez-Lavado, J.A. Diaz, M. Gomez-Morales, A. Gonzalez-Neira, G. Roncador, C. Rodriguez-Antona, J. Benitez, M. Mannelli, G. Opocher, M. Robledo, A. Cascon, Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma. Nat. Genet. 43(7), 663–667 (2011). CrossRefPubMedGoogle Scholar
  5. 5.
    J. Favier, A. Buffet, A.P. Gimenez-Roqueplo, HIF2A mutations in paraganglioma with polycythemia. N. Engl. J. Med. 367(22), 2161 (2012). author reply 2161–2162CrossRefPubMedGoogle Scholar
  6. 6.
    P.F. Plouin, L. Amar, O.M. Dekkers, M. Fassnacht, A.P. Gimenez-Roqueplo, J.W. Lenders, C. Lussey-Lepoutre, O. Steichen; Guideline Working, G., European society of endocrinology clinical practice guideline for long-term follow-up of patients operated on for a phaeochromocytoma or a paraganglioma. Eur. J. Endocrinol. 174(5), G1–G10 (2016). CrossRefPubMedGoogle Scholar
  7. 7.
    J. Crona, D. Taieb, K. Pacak, New perspectives on pheochromocytoma and paraganglioma: toward a molecular classification. Endocr. Rev. 38(6), 489–515 (2017). CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Z. Erlic, L. Rybicki, M. Peczkowska, H. Golcher, P.H. Kann, M. Brauckhoff, K. Mussig, M. Muresan, A. Schaffler, N. Reisch, M. Schott, M. Fassnacht, G. Opocher, S. Klose, C. Fottner, F. Forrer, U. Plockinger, S. Petersenn, D. Zabolotny, O. Kollukch, S. Yaremchuk, A. Januszewicz, M.K. Walz, C. Eng, H.P. Neumann, European-American pheochromocytoma study, G.: clinical predictors and algorithm for the genetic diagnosis of pheochromocytoma patients. Clinical cancer research: an official journal of the American Association for. Cancer Res. 15(20), 6378–6385 (2009). CrossRefGoogle Scholar
  9. 9.
    H.P. Neumann, Z. Erlic, C.C. Boedeker, L.A. Rybicki, M. Robledo, M. Hermsen, F. Schiavi, M. Falcioni, P. Kwok, C. Bauters, K. Lampe, M. Fischer, E. Edelman, D.E. Benn, B.G. Robinson, S. Wiegand, G. Rasp, B.A. Stuck, M.M. Hoffmann, M. Sullivan, M.A. Sevilla, M.M. Weiss, M. Peczkowska, A. Kubaszek, P. Pigny, R.L. Ward, D. Learoyd, M. Croxson, D. Zabolotny, S. Yaremchuk, W. Draf, M. Muresan, R.R. Lorenz, S. Knipping, M. Strohm, G. Dyckhoff, C. Matthias, N. Reisch, S.F. Preuss, D. Esser, M.A. Walter, H. Kaftan, T. Stover, C. Fottner, H. Gorgulla, M. Malekpour, M.M. Zarandy, J. Schipper, C. Brase, A. Glien, M. Kuhnemund, S. Koscielny, P. Schwerdtfeger, M. Valimaki, W. Szyfter, U. Finckh, K. Zerres, A. Cascon, G. Opocher, G.J. Ridder, A. Januszewicz, C. Suarez, C. Eng, Clinical predictors for germline mutations in head and neck paraganglioma patients: cost reduction strategy in genetic diagnostic process as fall-out. Cancer Res. 69(8), 3650–3656 (2009). CrossRefPubMedGoogle Scholar
  10. 10.
    M. Mannelli, M. Castellano, F. Schiavi, S. Filetti, M. Giacche, L. Mori, V. Pignataro, G. Bernini, V. Giache, A. Bacca, B. Biondi, G. Corona, G. Di Trapani, E. Grossrubatscher, G. Reimondo, G. Arnaldi, G. Giacchetti, F. Veglio, P. Loli, A. Colao, M.R. Ambrosio, M. Terzolo, C. Letizia, T. Ercolino, G. Opocher, Italian pheochromocytoma/paraganglioma, N.: clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas. J. Clin. Endocrinol. Metabol. 94(5), 1541–1547 (2009). CrossRefGoogle Scholar
  11. 11.
    H.P. Neumann, C. Pawlu, M. Peczkowska, B. Bausch, S.R. McWhinney, M. Muresan, M. Buchta, G. Franke, J. Klisch, T.A. Bley, S. Hoegerle, C.C. Boedeker, G. Opocher, J. Schipper, A. Januszewicz, C. Eng, European-American paraganglioma study, G.: distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations. JAMA 292(8), 943–951 (2004). CrossRefPubMedGoogle Scholar
  12. 12.
    J.W. Lenders, Q.Y. Duh, G. Eisenhofer, A.P. Gimenez-Roqueplo, S.K. Grebe, M.H. Murad, M. Naruse, K. Pacak, W.F. Young Jr., S. Endocrine, Pheochromocytoma and paraganglioma: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metabol. 99(6), 1915–1942 (2014). CrossRefGoogle Scholar
  13. 13.
    A. Iasonos, D. Schrag, G.V. Raj, K.S. Panageas, How to build and interpret a nomogram for cancer prognosis. J. Clin. Oncol. 26(8), 1364–1370 (2008). CrossRefPubMedGoogle Scholar
  14. 14.
    V.P. Balachandran, M. Gonen, J.J. Smith, R.P. DeMatteo, Nomograms in oncology: more than meets the eye. Lancet Oncol. 16(4), e173–e180 (2015). CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    W. Wang, X. Zhong, L. Ye, Y. Qi, T. Su, Q. Wei, J. Xie, L. Jiang, Y. Jiang, W. Zhou, B. Cui, G. Ning, ERBB-2 overexpression as a risk factor for malignant phaeochromocytomas and paraganglinomas. Clin. Endocrinol. 84(6), 822–829 (2016). CrossRefGoogle Scholar
  16. 16.
    X. Zhong, L. Ye, T. Su, J. Xie, W. Zhou, Y. Jiang, L. Jiang, G. Ning, W. Wang, Establishment and evaluation of a novel biomarker-based nomogram for malignant phaeochromocytomas and paragangliomas. Clin. Endocrinol. 87(2), 127–135 (2017). CrossRefGoogle Scholar
  17. 17.
    R. Alrezk, A. Suarez, I. Tena, K. Pacak, Update of pheochromocytoma syndromes: genetics, biochemical evaluation, and imaging. Front. Endocrinol. 9, 515 (2018). CrossRefGoogle Scholar
  18. 18.
    Karaconji, T., Whist, E., Jamieson, R.V., Flaherty, M.P., Grigg, J.R.B, Neurofibromatosis type 1: review and update on emerging therapies. Asia Pac J Ophthalmol. (2018).
  19. 19.
    Group, N.G.S.i.P.S., R.A. Toledo, N. Burnichon, A. Cascon, D.E. Benn, J.P. Bayley, J. Welander, C.M. Tops, H. Firth, T. Dwight, T. Ercolino, M. Mannelli, G. Opocher, R. Clifton-Bligh, O. Gimm, E.R. Maher, M. Robledo, A.P. Gimenez-Roqueplo, P.L. Dahia, Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat. Rev. Endocrinol. 13(4), 233–247 (2017). CrossRefGoogle Scholar
  20. 20.
    S.R. Bornstein, A.P. Gimenez-Roqueplo, Genetic testing in pheochromocytoma: increasing importance for clinical decision making. Ann. N. Y. Acad. Sci. 1073, 94–103 (2006). CrossRefPubMedGoogle Scholar
  21. 21.
    H.P. Neumann, B. Bausch, S.R. McWhinney, B.U. Bender, O. Gimm, G. Franke, J. Schipper, J. Klisch, C. Altehoefer, K. Zerres, A. Januszewicz, C. Eng, W.M. Smith, R. Munk, T. Manz, S. Glaesker, T.W. Apel, M. Treier, M. Reineke, M.K. Walz, C. Hoang-Vu, M. Brauckhoff, A. Klein-Franke, P. Klose, H. Schmidt, M. Maier-Woelfle, M. Peczkowska, C. Szmigielski, C. Eng; Freiburg-Warsaw-Columbus Pheochromocytoma Study, G., Germ-line mutations in nonsyndromic pheochromocytoma. N. Engl. J. Med. 346(19), 1459–1466 (2002). CrossRefPubMedGoogle Scholar
  22. 22.
    M.E. Robson, A.R. Bradbury, B. Arun, S.M. Domchek, J.M. Ford, H.L. Hampel, S.M. Lipkin, S. Syngal, D.S. Wollins, N.M. Lindor, American society of clinical oncology policy statement update: genetic and genomic testing for cancer susceptibility. J. Clin. Oncol. 33(31), 3660–3667 (2015). CrossRefPubMedGoogle Scholar
  23. 23.
    B. Shine, Gene targeting through o-methylated catecholamine metabolite patterns. Clin. Chem. 57(3), 361–362 (2011). CrossRefPubMedGoogle Scholar
  24. 24.
    G. Eisenhofer, J.W. Lenders, H. Timmers, M. Mannelli, S.K. Grebe, L.C. Hofbauer, S.R. Bornstein, O. Tiebel, K. Adams, G. Bratslavsky, W.M. Linehan, K. Pacak, Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma. Clin. Chem. 57(3), 411–420 (2011). CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ting Wei Su
    • 1
  • Xu Zhong
    • 1
  • Lei Ye
    • 1
    • 2
  • Wei Song
    • 1
  • Lei Jiang
    • 1
  • Jing Xie
    • 3
  • Yiran Jiang
    • 1
  • Weiwei Zhou
    • 1
  • Cui Zhang
    • 1
  • Luming Wu
    • 1
  • Guang Ning
    • 1
    • 2
  • Weiqing Wang
    • 1
    • 2
    Email author
  1. 1.Shanghai Clinical Center for Endocrine and Metabolic Diseases, Department of Endocrinology, Ruijin HospitalShanghai Jiaotong University, School of MedicineShanghaiChina
  2. 2.Shanghai Key Laboratory for Endocrine TumorsShanghai Institute of Endocrine and Metabolic DiseasesShanghaiChina
  3. 3.Department of Pathology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina

Personalised recommendations