Advertisement

Endocrine

pp 1–4 | Cite as

Network medicine and type 2 diabetes mellitus: insights into disease mechanism and guide to precision medicine

  • Joseph LoscalzoEmail author
Mini Review

Abstract

Understanding the genomic basis of type 2 diabetes mellitus is a major challenge. Simple genome-wide association studies (GWAS) have identified ~250 loci that link to the phenotype; however, the great majority have tiny effect size of uncertain mechanistic significance. Polygenic risk score strategies do nothing more than integrate these statistical association into a single scalar parameter, again offering limited mechanistic insight. The new discipline of network medicine offers an approach by which to provide useful mechanistic information from GWAS and other omic data sets. To understand disease in the network context requires using a predefined comprehensive network—in our case the protein–protein interaction network, or interactome—as a template upon which to map loci from GWAS or other data sources. These loci have been shown to cluster in a subnetwork in the interactome (as is the case for most diseases), exploration of which identifies novel pathways that regulate disease pathogenesis and uncovers novel targets for therapeutic intervention. Such an approach is essential for utilizing the growing pool of omic data in a mechanistically rational way as we move increasingly towards precision medicine for this highly prevalent disorder.

Keywords

Systems biology Network medicine Complex systems Genomics Interactome Metabolism 

Notes

Acknowledgements

The author thank Ms. Stephanie Tribuna for expert technical assistance. This work was supported in part by National Institutes of Health grants HL61795, HG007690, GM107618, and HL119145; and by American Heart Association grant D007382.

Compliance with ethical standards

Conflict of interest

The author is a scientific cofounder of Scipher Medicine, Inc., which uses molecular network approaches for precision diagnostics and therapeutics.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

References

  1. 1.
    N.H. Cho, J.E. Shaw, S. Karuranga, Y. Huang, J.D. da Rocha Fernandes, A.W. Ohlrogge, B. Malanda, IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res. Clin. Pract. 138, 271–281 (2018)CrossRefGoogle Scholar
  2. 2.
    S. Mayor, Diabetes: precision approach will improve outcomes, says research director. BMJ 364, 1186 (2019).  https://doi.org/10.1136/bmj.|18 Google Scholar
  3. 3.
    R.O. Yeung, F. Hannah-Shmouni, K. Niederhoffer, M.A. Walker, Not quite type 1 or type 2, what now? Review of monogenic, mitochondrial, and syndrome diabetes. Revs. Endocrin. Metabol. Disord. 19, 35–52 (2018)CrossRefGoogle Scholar
  4. 4.
    A. Mahajan, D. Taliun, M. Thurner, N.R. Robertson, J.M. Torres, N.W. Rayner, A.J. Payne, V. Steinthorsdottir, R.A. Scott, N. Grarup, J.P. Cook, E.M. Schmidt, M. Wuttke, C. Sarnowski, R. Magi, J. Nano, C. Gieger, S. Trompet, C. Lecoeur, M.H. Preuss, B.P. Prins, X. Guo, L.F. Bielak, J.E. Below, D.W. Bowden, J.C. Chambers, Y.J. Kim, M.C.Y. Ng, L.E. Petty, X. Sim, W. Zhang, A.J. Bennett, J. Bork-Jensen, C.M. Brummett, M. Canouil, K.U. Ec Kardt, K. Fischer, S.L.R. Kardia, F. Kronenberg, K. Lall, C.T. Liu, A.E. Locke, J. Luan, I. Ntalla, V. Nylander, S. Schonherr, C. Schurmann, L. Yengo, E.P. Bottinger, I. Brandslund, C. Christensen, G. Dedoussis, J.C. Florez, I. Ford, O.H. Franco, T.M. Frayling, V. Giedraitis, S. Hackinger, A.T. Hattersley, C. Herder, M.A. Ikram, M. Ingelsson, M.E. Jorgensen, T. Jorgensen, J. Kriebel, J. Kuusisto, S. Ligthart, C.M. Lindgren, A. Linneberg, V. Lyssenko, V. Mamakou, T. Meitinger, K.L. Mohlke, A.D. Morris, G. Nadkarni, J.S. Pankow, Al Peters, N. Sattar, A. Stancakova, K. Strauch, K.D. Taylor, B. Thorand, G. Thorleifsson, U. Thorsteinsdottir, J. Tuomilehto, D.R. Witte, J. Dupuis, P.A. Peyser, E. Zeggini, R.J.F. Loos, P. Froguel, E. Ingelsson, L. Lind, L. Groop, M. Laakso, F.S. Collins, J.W. Jukema, C.N.A. Palmer, H. Grallert, A. Metspalu, A. Dehghan, A. Kottgen, G.R. Abecasis, J.B. Meigs, J.I. Rotter, J. Marchini, O. Pedersen, T. Hansen, C. Langenberg, N.J. Wareham, K. Stefansson, A.L. Gloyn, A.P. Morris, M. Boehnke, M.I. McCarthy, Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenomic maps. Nat. Genet. 50, 1505–1513 (2018)CrossRefGoogle Scholar
  5. 5.
    C. Langenberg, L.A. Lotta, Genomic insights into the causes of type 2 diabetes. Lancet 391, 2463–2474 (2018)CrossRefGoogle Scholar
  6. 6.
    A.V. Khera, M. Chaffin, K.G. Aragam, M.E. Haas, C. Roselli, S.H. Choi, P. Natarajan, E.S. Lander, S.A. Lubitz, P.T. Ellinor, S. Kathiresan, Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to mongenic diseases. Nat. Genet. 50, 1219–1224 (2018)CrossRefGoogle Scholar
  7. 7.
    J.E. Spindel, S.R. McCouch, When more is better; how data sharing would accelerate genomic selection of crop plants. New Phytol. 212, 814–826 (2016)CrossRefGoogle Scholar
  8. 8.
    M.O. Goodarzi, T. Nagpal, P. Greer, J. Cui, Y.I. Chen, X. Guo, J.S. Pankow, J.I. Rotter, S. Alkaade, S.T. Amann, J. Baillie, P.A. Banks, R.E. Brand, D.L. Conwell, G.A. Cote, C.E. Forsmark, T.B. Gardner, A. Gelrud, N. Guda, J. LaRusch, M.D. Lewis, M.E. Money, T. Muniraj, G.I. Papachristou, J. Romagnuolo, B.S. Sandhu, S. Sherman, V.K. Singh, C.M. Wilcox, S.J. Pandol, W.G. Park, D.K. Andersen, M.D. Bellin, P.A. Hart, D. Yadav, D.C. Whitcomb, Consortium for the Study of Chronic Pancreatitis, Diabetes, and Pancreatic Cancer (CPDPC). Genetic risk score in diabetes associated with chronic pancreatitis versus type 2 diabetes mellitus. Clin. Transl. Gastroenterol. 10(7), e00057 (2019).CrossRefGoogle Scholar
  9. 9.
    M. Warren, The power of many. Nature 562, 181–183 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Menche, A. Sharma, M. Kitsak, S.D. Ghiassian, M. Vidal, J. Loscalzo, A.L. Barabási, Disease networks: uncovering disease-disease relationships through the incomplete interactome. Science 347, 1257601 (2015)CrossRefGoogle Scholar
  11. 11.
    L.Y. Lee, J. Loscalzo, Network medicine in pathobiology. Am. J. Pathol. 189, 1311–1326 (2019)CrossRefGoogle Scholar
  12. 12.
    F.S. Garmaroudi, D.E. Handy, Y.Y. Liu, J. Loscalzo, Systems pharmacology and rational polypharmacy: nitric oxide-cyclic GMP signaling pathway as an illustrative example and derivation of the general case. PLoS Comput. Biol. 12, e1004822 (2016)CrossRefGoogle Scholar
  13. 13.
    F. Cheng, R.J. Desai, D.E. Handy, R.S. Wang, S. Schneeweiss, A.L. Barabasi, J. Loscalzo, Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun. 9, 2691 (2018)CrossRefGoogle Scholar
  14. 14.
    S. Mulder, H. Hamidi, M. Kretzler, W. Ju, An integrative systems biology approach for precision medicine in diabetic kidney disease. Diabetes Obes. Metab. 20 (Suppl 3), 6–13 (2018)CrossRefGoogle Scholar
  15. 15.
    E. Kim, P.J. Caraballo, M.R. Castro, D.S. Pieczkiewicz, G.J. Simon, Towards more accessible precision medicine: building a more transferable machine learning model to support prognostic decisions for micro- and macrovascular complications of type 2 diabetes mellitus. J. Med. Syst. 43, 185 (2019)CrossRefGoogle Scholar
  16. 16.
    S.M. Schüssler-Fiorenza Rose, K. Contrepois, K.J. Moneghetti, W. Zhou, T. Mishra, S. Mataraso, O. Dagan-Rosenfeld, A.B. Ganz, J. Dunn, D. Hornburg, S. Rego, D. Perelman, S. Ahadi, M.R. Sailani, Y. Zhou, S.R. Leopold, J. Chen, M. Ashland, J.W. Christle, M. Avina, P. Limcaoco, C. Ruiz, M. Tan, A.J. Butte, G.M. Weinstock, G.M. Slavich, E. Sodergren, T.L. McLaughlin, F. Haddad, M.P. Snyder, A longitudinal big data approach for precision health. Nat. Med. 25, 792–804 (2019)CrossRefGoogle Scholar
  17. 17.
    H. Fitipaldi, M.I. McCarthy, J.C. Florez, P.W. Franks, A global overview of precision medicine in type 2 diabetes. Diabetes 67, 1911–1922 (2018)CrossRefGoogle Scholar
  18. 18.
    J.H. Chu, C.P. Hersh, P.J. Castaldi, M.H. Cho, B.A. Raby, N. Laird, R. Bowler, S. Rennard, J. Loscalzo, J. Quackenbush, E.K. Silverman, Analyzing networks of phenotypes in complex diseases: methodology and applications in COPD. BMC Syst. Biol. 8, 78 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Brigham and Women’s HospitalHarvard Medical SchoolBostonUSA

Personalised recommendations