Advertisement

Endocrine

, Volume 66, Issue 2, pp 310–318 | Cite as

Mammosomatotroph and mixed somatotroph-lactotroph adenoma in acromegaly: a retrospective study with long-term follow-up

  • Liang Lv
  • Yong Jiang
  • Senlin Yin
  • Yu Hu
  • Cheng Chen
  • Weichao Ma
  • Shu Jiang
  • Peizhi ZhouEmail author
Original Article
  • 83 Downloads

Abstract

Purpose

Although well-documented from pathological aspect, the clinical features and outcomes of acromegaly with mammosomatotroph (MSA) and mixed somatotroph-lactotroph adenoma (MSLA) are seldom reported. Thus, in this study, we analyzed and reported the clinical data about MSAs and MSLAs.

Methods

We retrospectively reviewed medical records of patients with acromegaly in our institution during 2008–2017. Growth hormone (GH)-secreting adenomas were categorized into pure somatotroph adenoma (PSA), MSA and MSLA based on inclusion and exclusion criteria. Clinical information and treatment outcomes during follow-up were analyzed by univariate and multivariate methods.

Results

Among 94 patients within this cohort, PSAs, MSAs, and MSLAs accounted for 53, 28 and 13 cases, respectively. MSAs often had smaller size, lower frequency of cavernous sinus invasion and higher gross total resection (GTR) rate. MSLAs were characterized by bigger tumor size, higher frequency of preoperative hyperprolactinemia, and lower GTR rate. Thus, MSLAs had worse long-term biological remission rate than MSAs and PSAs (15.4% vs. 50.0% and 26.4%, p = 0.0371). Gender (male, OR = 0.784, p = 0.011) and tumor volume (OR = 0.784, p = 0.020) were independent predictors for long-term biological remission in binary logistic regression. Subgroup analyses indicated that postoperative nadir GH level (GH-7, HR = 1.242, p = 0.001) was the only risk factor for tumor recurrence for patients with GTR.

Conclusions

Our results provide valuable insights into clinicopathological features of acromegaly. MSAs were relatively smaller lesions with better prognosis. MSLAs were more aggressive with massive size, invasiveness and preoperative hyperprolactinemia. Tumor size and GH-7 were significantly associated with biological remission and tumor relapse after GTR, respectively.

Keywords

Acromegaly Mammosomatotroph adenoma Mixed somatotroph-lactotroph adenoma Remission 

Notes

Funding

This research was financially supported by the Foundation of Science and Technology Department of Sichuan Province (Grant No. 2018SZ0179 and Grant No. 2016SZ0015).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This study was approved by Biomedical Research Ethics Committee of West China Hospital of Sichuan University.

Informed consent

For this type of study formal consent is not required.

Supplementary material

12020_2019_2029_MOESM1_ESM.docx (24 kb)
Supplementary Table 1

References

  1. 1.
    D. Esposito, O. Ragnarsson, D. Granfeldt, T. Marlow, G. Johannsson, D.S. Olsson, Decreasing mortality and changes in treatment patterns in patients with acromegaly from a nationwide study. Eur. J. Endocrinol. 178, 459–469 (2018)Google Scholar
  2. 2.
    D. Baris, G. Gridley, E. Ron, E. Weiderpass, L. Mellemkjaer, A. Ekbom, J.H. Olsen, J.A. Baron, J.F. Fraumeni Jr., Acromegaly and cancer risk: a cohort study in Sweden and Denmark. Cancer Causes Control Ccc 13(5), 395–400 (2002).CrossRefGoogle Scholar
  3. 3.
    S. Melmed, Medical progress: acromegaly. New Engl. J. Med. 355(24), 2558–2573 (2006)CrossRefGoogle Scholar
  4. 4.
    S.M. Webb, F. Casanueva, J.A.H. Wass, Oncological complications of excess GH in acromegaly. Pituitary 5(1), 21 (2002)CrossRefGoogle Scholar
  5. 5.
    P. Nomikos, M. Buchfelder, R. Fahlbusch, The outcome of surgery in 668 patients with acromegaly using current criteria of biochemical ‘cure’. Eur. J. Endocrinol. 152(3), 379–387 (2005)CrossRefGoogle Scholar
  6. 6.
    P. Mortini, M. Losa, R. Barzaghi, N. Boari, M. Giovanelli, Results of transsphenoidal surgery in a large series of patients with pituitary adenoma. Neurosurgery 56(6), 1222 (2005)CrossRefGoogle Scholar
  7. 7.
    D.B. Hazer, D. Berker, M. Berker, Treatment of acromegaly by endoscopic transsphenoidal surgery: surgical experience in 214 cases and cure rates according to current consensus criteria. J. Neurosurg. 119(6), 1467 (2013)CrossRefGoogle Scholar
  8. 8.
    M. Andersen, Management of endocrine disease: GH excess: diagnosis and medical therapy. Eur. J. Endocrinol./Eur. Fed. Endocr. Soc. 170(1), R31–R41 (2014).  https://doi.org/10.1530/EJE-13-0532 CrossRefGoogle Scholar
  9. 9.
    L. Vilar, M. Fleseriu, L.A. Naves, J.L. Albuquerque, P.S. Gadelha, M. dos Santos Faria, G.C. Nascimento, R.M. Montenegro Jr., R.M. Montenegro, Can we predict long-term remission after somatostatin analog withdrawal in patients with acromegaly? Results from a multicenter prospective trial. Endocrine 46(3), 577–584 (2014).  https://doi.org/10.1007/s12020-013-0094-9 CrossRefPubMedGoogle Scholar
  10. 10.
    M. Losa, C.A. Donofrio, M. Gemma, L.R. Barzaghi, P. Mortini, Pretreatment with somatostatin analogs does not affect the anesthesiologic management of patients with acromegaly. Pituitary 22(2), 187–194 (2019).  https://doi.org/10.1007/s11102-019-00952-0 CrossRefPubMedGoogle Scholar
  11. 11.
    F. Albarel, F. Castinetti, I. Morange, N. Guibert, T. Graillon, H. Dufour, T. Brue, Pre-surgical medical treatment, a major prognostic factor for long-term remission in acromegaly. Pituitary 21(6), 615–623 (2018).  https://doi.org/10.1007/s11102-018-0916-0 CrossRefPubMedGoogle Scholar
  12. 12.
    N. Mohammed, D. Ding, Y.-C. Hung, Z. Xu, C.-C. Lee, H. Kano, R. Martínez-Álvarez, N. Martínez-Moreno, D. Mathieu, M. Kosak, C. P. Cifarelli, G. A. Katsevman, L. D. Lunsford, M. L. Vance, J. P. Sheehan, Primary versus postoperative stereotactic radiosurgery for acromegaly: a multicenter matched cohort study. 1 (2019).  https://doi.org/10.3171/2019.1.jns183398
  13. 13.
    M.D. Page, L.R. Bridges, J.H. Barth, A.M. Mcnichol, P.E. Belchetz, Development of acromegaly during treatment of hyperprolactinemia with bromocriptine: an unusual acidophil stem cell adenoma. J. Clin. Endocrinol. Metab. 81(12), 4484–4487 (1996)PubMedGoogle Scholar
  14. 14.
    O. Mete, M.B. Lopes, Overview of the 2017 WHO classification of pituitary tumors. Endocr. Pathol. 28(3), 228–243 (2017).  https://doi.org/10.1007/s12022-017-9498-z CrossRefPubMedGoogle Scholar
  15. 15.
    W. Saeger, J. Honegger, M. Theodoropoulou, U.J. Knappe, C. Schofl, S. Petersenn, R. Buslei, Clinical impact of the current WHO classification of pituitary adenomas. Endocr. Pathol. 27(2), 104–114 (2016).  https://doi.org/10.1007/s12022-016-9418-7 CrossRefPubMedGoogle Scholar
  16. 16.
    C.C. Lee, M.L. Vance, M.B. Lopes, Z. Xu, C.J. Chen, J. Sheehan, Stereotactic radiosurgery for acromegaly: outcomes by adenoma subtype. Pituitary 18(3), 1–9 (2015)CrossRefGoogle Scholar
  17. 17.
    M.B.S. Lopes, The 2017 World Health Organization classification of tumors of the pituitary gland: a summary. Acta Neuropathol. 134(4), 521–535 (2017).  https://doi.org/10.1007/s00401-017-1769-8 CrossRefPubMedGoogle Scholar
  18. 18.
    J. Rick, A. Jahangiri, P.M. Flanigan, A. Chandra, S. Kunwar, L. Blevins, M. K. Aghi, Growth hormone and prolactin-staining tumors causing acromegaly: a retrospective review of clinical presentations and surgical outcomes. J. Neurosurg. 1–7 (2018).  https://doi.org/10.3171/2018.4.JNS18230 CrossRefGoogle Scholar
  19. 19.
    A.S. Micko, A. Wohrer, S. Wolfsberger, E. Knosp, Invasion of the cavernous sinus space in pituitary adenomas: endoscopic verification and its correlation with an MRI-based classification. J. Neurosurg. 122(4), 803–811 (2015).  https://doi.org/10.3171/2014.12.JNS141083 CrossRefPubMedGoogle Scholar
  20. 20.
    P. Andujar-Plata, R. Villar-Taibo, M.D. Ballesteros-Pomar, A. Vidal-Casariego, B. Perez-Corral, J.M. Cabezas-Agricola, P. Alvarez-Vazquez, R. Serramito, I. Bernabeu, Long-term outcome of multimodal therapy for giant prolactinomas. Endocrine 55(1), 231–238 (2017).  https://doi.org/10.1007/s12020-016-1129-9 CrossRefPubMedGoogle Scholar
  21. 21.
    A.B. Moraes, C.M. Silva, L. Vieira Neto, M.R. Gadelha, Giant prolactinomas: the therapeutic approach. Clin. Endocrinol. (Oxf.) 79(4), 447–456 (2013).  https://doi.org/10.1111/cen.12242 CrossRefGoogle Scholar
  22. 22.
    C.Y. Hsu, W.Y. Guo, C.P. Chien, D.M. Ho, MIB-1 labeling index correlated with magnetic resonance imaging detected tumor volume doubling time in pituitary adenoma. Eur. J. Endocrinol./Eur. Fed. Endocr. Soc. 162(6), 1027–1033 (2010).  https://doi.org/10.1530/EJE-09-1100 CrossRefGoogle Scholar
  23. 23.
    L. Katznelson, E.R. Laws Jr., S. Melmed, M.E. Molitch, M.H. Murad, A. Utz, J.A. Wass, Acromegaly: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 99(11), 3933–3951 (2014).  https://doi.org/10.1210/jc.2014-2700 CrossRefGoogle Scholar
  24. 24.
    K. Kiseljak-Vassiliades, N.E. Carlson, M.T. Borges, B.K. Kleinschmidt-DeMasters, K.O. Lillehei, J.M. Kerr, M.E. Wierman, Growth hormone tumor histological subtypes predict response to surgical and medical therapy. Endocrine 49(1), 231–241 (2015).  https://doi.org/10.1007/s12020-014-0383-y CrossRefPubMedGoogle Scholar
  25. 25.
    P. Beck-Peccoz, G. Rodari, C. Giavoli, A. Lania, Central hypothyroidism - a neglected thyroid disorder. Nat. Rev. Endocrinol. 13(10), 588–598 (2017).  https://doi.org/10.1038/nrendo.2017.47 CrossRefPubMedGoogle Scholar
  26. 26.
    L. Persani, Clinical review: Central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges. J. Clin. Endocrinol. Metab. 97(9), 3068–3078 (2012).  https://doi.org/10.1210/jc.2012-1616 CrossRefPubMedGoogle Scholar
  27. 27.
    V. De Sanctis, H. Elsedfy, A.T. Soliman, I.Z. Elhakim, N.A. Soliman, M. Karimi, R. Elalaily, The diagnostic approach to central adrenocortical insufficiency (CAI) in thalassemia. Mediterr. J. Hematol. Infect. Dis. 8(1), e2016026 (2016).  https://doi.org/10.4084/MJHID.2016.026 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    U. Boehm, P.M. Bouloux, M.T. Dattani, N. de Roux, C. Dode, L. Dunkel, A.A. Dwyer, P. Giacobini, J.P. Hardelin, A. Juul, M. Maghnie, N. Pitteloud, V. Prevot, T. Raivio, M. Tena-Sempere, R. Quinton, J. Young, Expert consensus document: European Consensus Statement on congenital hypogonadotropic hypogonadism–pathogenesis, diagnosis and treatment. Nature reviews. Endocrinology 11(9), 547–564 (2015).  https://doi.org/10.1038/nrendo.2015.112 CrossRefPubMedGoogle Scholar
  29. 29.
    S.C. Dogansen, G.Y. Yalin, S. Tanrikulu, S. Tekin, N. Nizam, B. Bilgic, S. Sencer, S. Yarman, Clinicopathological significance of baseline T2-weighted signal intensity in functional pituitary adenomas. Pituitary 21(4), 347–354 (2018).  https://doi.org/10.1007/s11102-018-0877-3 CrossRefPubMedGoogle Scholar
  30. 30.
    P. Iulia, P. Patrick, A.F. Daly, S. Franck, B.S. Claude, N. Sonia, S. Mouna, B. Thierry, G. Nadine, C. Philippe, Pituitary MRI characteristics in 297 acromegaly patients based on T2-weighted sequences. Endocr.-Relat. Cancer 22(2), 169–177 (2015)CrossRefGoogle Scholar
  31. 31.
    E. Horvath, K. Kovacs, W. Singer, H.S. Smyth, D.W. Killinger, C. Erzin, M.H. Weiss, Acidophil stem cell adenoma of the human pituitary: clinicopathologic analysis of 15 cases. Cancer 47(4), 761–771 (1981)CrossRefGoogle Scholar
  32. 32.
    M. Bergsneider, L. Mirsadraei, W.H. Yong, N. Salamon, M. Linetsky, M.B. Wang, D.L. McArthur, A.P. Heaney, The pituitary stalk effect: is it a passing phenomenon? J. Neuro-Oncol. 117(3), 477–484 (2014).  https://doi.org/10.1007/s11060-014-1386-5 CrossRefGoogle Scholar
  33. 33.
    N. Karavitaki, G. Thanabalasingham, H.C. Shore, R. Trifanescu, O. Ansorge, N. Meston, H.E. Turner, J.A. Wass, Do the limits of serum prolactin in disconnection hyperprolactinaemia need re-definition? A study of 226 patients with histologically verified non-functioning pituitary macroadenoma. Clin. Endocrinol. (Oxf.) 65(4), 524–529 (2006).  https://doi.org/10.1111/j.1365-2265.2006.02627.x CrossRefGoogle Scholar
  34. 34.
    M.V. Smith, E.R. Laws Jr., Magnetic resonance imaging measurements of pituitary stalk compression and deviation in patients with nonprolactin-secreting intrasellar and parasellar tumors: lack of correlation with serum prolactin levels. Neurosurgery 34(5), 834–839 (1994). discussion 839.PubMedGoogle Scholar
  35. 35.
    A. Heaney, Management of aggressive pituitary adenomas and pituitary carcinomas. J. Neuro-Oncol. 117(3), 459–468 (2014).  https://doi.org/10.1007/s11060-014-1413-6 CrossRefGoogle Scholar
  36. 36.
    M. P. Salomon, X. Wang, D. Marzese, S. C. Hsu, N. Nelson, Z. Xin, C. Matsuba, Y. Takasumi, C. Ballesterosmerino, B. A. Fox, The epigenomic landscape of pituitary adenomas reveals specific alterations and differentiates among acromegaly, Cushing’s disease and endocrine-inactive subtypes. Clin. Cancer Res. 24(17), 4126–4136 (2018)CrossRefGoogle Scholar
  37. 37.
    M. Gao, B. Zhu, Z. Xu, S. Liu, J. Liu, G. Zhang, Y. Gao, Y. Fan, X. Kang, Association between acromegaly and a single nucleotide polymorphism (rs2854744) in the IGFBP3 gene. BMC Med. Genet. 19(1), 182 (2018).  https://doi.org/10.1186/s12881-018-0698-2 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    R.A. Kristof, G. Neuloh, L. Redel, D. Klingmüller, J. Schramm, Reliability of the oral glucose tolerance test in the early postoperative assessment of acromegaly remission. J. Neurosurg. 97(6), 1282 (2002)CrossRefGoogle Scholar
  39. 39.
    E.H. Kim, M.C. Oh, E.J. Lee, S.H. Kim, Predicting long-term remission by measuring immediate postoperative growth hormone levels and oral glucose tolerance test in acromegaly. Neurosurgery 70(5), 1106–1113 (2012).  https://doi.org/10.1227/NEU.0b013e31823f5c16 CrossRefPubMedGoogle Scholar
  40. 40.
    L. Lv, Y. Hu, P. Zhou, S. Zhang, S. Yin, N. Zhang, S. Jiang, Presurgical treatment with somatostatin analogues in growth hormone-secreting pituitary adenomas: a long-term single-center experience. Clin. Neurol. Neurosurg. 167, 24–30 (2018).  https://doi.org/10.1016/j.clineuro.2018.02.006 CrossRefPubMedGoogle Scholar
  41. 41.
    I.M. Holdaway, R.C. Rajasoorya, G.D. Gamble, Factors influencing mortality in acromegaly. J. Clin. Endocrinol. Metab. 89(2), 667–674 (2004).  https://doi.org/10.1210/jc.2003-031199 CrossRefPubMedGoogle Scholar
  42. 42.
    M. Sherlock, R.C. Reulen, A. Aragon-Alonso, J. Ayuk, R.N. Clayton, M.C. Sheppard, M.M. Hawkins, A.S. Bates, P.M. Stewart, A paradigm shift in the monitoring of patients with acromegaly: last available growth hormone may overestimate risk. J. Clin. Endocrinol. Metab. 99(2), 478–485 (2014).  https://doi.org/10.1210/jc.2013-2450 CrossRefPubMedGoogle Scholar
  43. 43.
    L. Lv, S. Zhang, Y. Hu, P. Zhou, L. Gao, M. Wang, Z. Sun, C. Chen, S. Yin, X. Wang, S. Jiang, Invasive pituitary adenoma-derived tumor-associated fibroblasts promote tumor progression both in vitro and in vivo. Exp. Clin. Endocrinol. Diabetes (2017).  https://doi.org/10.1055/s-0043-119636 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neurosurgery, Pituitary Adenoma Multidisciplinary CenterWest China Hospital of Sichuan UniversityChengduChina

Personalised recommendations