Advertisement

Endocrine

, Volume 66, Issue 3, pp 573–584 | Cite as

Identification of gene co-expression modules and hub genes associated with lymph node metastasis of papillary thyroid cancer

  • Tianyu Zhai
  • Dilidaer Muhanhali
  • Xi Jia
  • Zhiyong Wu
  • Zhenqin Cai
  • Yan LingEmail author
Original Article

Abstract

Papillary thyroid cancer (PTC) is the most prevalent histological type among thyroid cancers, and some patients are at a high risk for recurrent disease or even death. Identification for the potential biomarkers of PTC may contribute to early discovery of recurrence and treatment. In The Cancer Genome Atlas (TCGA) database, we obtained the information of RNA sequence data and clinical characteristics of PTC. Weighted gene co-expression network analysis (WGCNA) was performed to construct gene co-expression networks and investigate the relationship between modules and clinical traits. Finally, we constructed 16 co-expression modules in 10,428 genes, and three key modules (darkturquoise, lightyellow, and red) associated with tumor N grade were identified. The results of functional annotation indicated that the darkturquoise module was primarily enriched in the regulation of the extracellular matrix (ECM), collagen metabolism, and cell adhesion, the lightyellow module was primarily enriched in the mitochondrial function regulation and energy synthesis, and the red module was primarily enriched in the process of cell junction, apoptosis, and inflammatory response, suggesting their significant role in the progression of PTC. In addition, the hub genes in the three modules were identified and screened for differentially expressed genes (DEGs). Relapse-free survival analyses found that 11 genes (KCNQ3, MET, FN1, ITGA3, RUNX1, ITGA2, PERP, GCSH, FAAH, NGFRAP1, and HSPA5) may play a pivotal role in PTC relapse. In general, our research revealed the key co-expression modules and identified several prognostic biomarkers, which provides some new insights into the lymph node metastasis of PTC.

Keywords

Papillary thyroid cancer Weighted gene co-expression network analysis Hub genes Lymph node metastasis 

Notes

Acknowledgements

We thank all the authors for their contributions.

Funding

This study was funded by the National Natural Science Foundation of China (grant number 81402207).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12020_2019_2021_MOESM1_ESM.tif (877 kb)
Supplementary Figure1.
12020_2019_2021_MOESM2_ESM.tif (872 kb)
Supplementary Figure2.
12020_2019_2021_MOESM3_ESM.docx (20 kb)
Supplementary Tables.

References

  1. 1.
    W. Chen, R. Zheng, T. Zuo, H. Zeng, S. Zhang, J. He, National cancer incidence and mortality in China, 2012. Chin. J. Cancer Res. 28(1), 1–11 (2016).  https://doi.org/10.3978/j.issn.1000-9604.2016.02.08 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    C.M. Kitahara, J.A. Sosa, The changing incidence of thyroid cancer. Nat. Rev. Endocrinol. 12(11), 646–653 (2016).  https://doi.org/10.1038/nrendo.2016.110 CrossRefPubMedGoogle Scholar
  3. 3.
    Y. Wang, W. Wang, Increasing Incidence of Thyroid Cancer in Shanghai, China, 1983-2007. Asia Pac. J. Public Health 27(2), NP223–NP229 (2015).  https://doi.org/10.1177/1010539512436874 CrossRefPubMedGoogle Scholar
  4. 4.
    D.S. McLeod, Current concepts and future directions in differentiated thyroid cancer. Clin. Biochem Rev. 31(1), 9–19 (2010)PubMedPubMedCentralGoogle Scholar
  5. 5.
    M.J. Schlumberger, Papillary and follicular thyroid carcinoma. N. Engl. J. Med 338(5), 297–306 (1998).  https://doi.org/10.1056/nejm199801293380506 CrossRefPubMedGoogle Scholar
  6. 6.
    H. Li, Z. Tian, Y. Qu, Q. Yang, H. Guan, B. Shi, M. Ji, P. Hou, SIRT7 promotes thyroid tumorigenesis through phosphorylation and activation of Akt and p70S6K1 via DBC1/SIRT1 axis. Oncogene 1–13 (2018).  https://doi.org/10.1038/s41388-018-0434-6 CrossRefGoogle Scholar
  7. 7.
    X. Li, X. Ruan, P. Zhang, Y. Yu, M. Gao, S. Yuan, Z. Zhao, J. Yang, L. Zhao, TBX3 promotes proliferation of papillary thyroid carcinoma cells through facilitating PRC2-mediated p57KIP2 repression. Oncogene 37(21), 2773–2792 (2018).  https://doi.org/10.1038/s41388-017-0090-2 CrossRefPubMedGoogle Scholar
  8. 8.
    Y. Li, Q. Yang, H. Guan, B. Shi, M. Ji, P. Hou, ZNF677 suppresses Akt phosphorylation and tumorigenesis in thyroid cancer. Cancer Res. 5216–5228 (2018).  https://doi.org/10.1158/0008-5472.can-18-0003 CrossRefGoogle Scholar
  9. 9.
    S. Ock, J. Ahn, S.H. Lee, H. M. Kim, H. Kang, Y.-K. Kim, Y.-K., H. Kook, W.J. Park, S. Kim, S. Kimura, C.K. Jung, M. Shong, M. Holzenberger, E. Dale Abel, T.J. Lee, B.Y. Cho, H.-S. Kim, J. Kim, Thyrocyte-specific deletion of insulin and IGF-1 receptors induces papillary thyroid carcinoma-like lesions through EGFR pathway activation. Int. J. Cancer 1–13 (2018).  https://doi.org/10.1002/ijc.31779 CrossRefGoogle Scholar
  10. 10.
    S. Tavazoie, J.D. Hughes, M.J. Campbell, R.J. Cho, G.M. Church, Systematic determination of genetic network architecture. Nat. Genet. 22(3), 281–285 (1999).  https://doi.org/10.1038/10343 CrossRefPubMedGoogle Scholar
  11. 11.
    A.P. Presson, E.M. Sobel, J.C. Papp, C.J. Suarez, T. Whistler, M.S. Rajeevan, S.D. Vernon, S. Horvath, Integrated weighted gene co-expression network analysis with an application to chronic fatigue syndrome. BMC Syst. Biol. 2, 95–116 (2008).  https://doi.org/10.1186/1752-0509-2-95 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    P. Langfelder, S. Horvath, WGCNA: an R package for weighted correlation network analysis. BMC Bioinform. 9, 559–572 (2008).  https://doi.org/10.1186/1471-2105-9-559 CrossRefGoogle Scholar
  13. 13.
    M. Giulietti, G. Occhipinti, G. Principato, F. Piva, Identification of candidate miRNA biomarkers for pancreatic ductal adenocarcinoma by weighted gene co-expression network analysis. Cell. Oncol. 40(2), 181–192 (2017).  https://doi.org/10.1007/s13402-017-0315-y CrossRefGoogle Scholar
  14. 14.
    X. Shao, B. Wang, K. Mu, L. Li, Q. Li, W. He, Q. Yao, X. Jia, J.-a.Zhang, Key gene co-expression modules and functional pathways involved in the pathogenesis of Graves’ disease. Mol. Cell. Endocrinol. 474, 252–259 (2018).  https://doi.org/10.1016/j.mce.2018.03.015 CrossRefPubMedGoogle Scholar
  15. 15.
    N. Shved, G. Warsow, F. Eichinger, D. Hoogewijs, S. Brandt, P. Wild, M. Kretzler, C.D. Cohen, M.T. Lindenmeyer, Transcriptome-based network analysis reveals renal cell type-specific dysregulation of hypoxia-associated transcripts. Sci. Rep. 7(1), 8576–8593 (2017).  https://doi.org/10.1038/s41598-017-08492-y CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    G.J. Dennis, B.T. Sherman, D.A. Hosack, J. Yang, W. Gao, H.C. Lane, R.A. Lempicki, DAVID: database for annotation, visualization, and integrated discovery. Genome Biol. 4(5), P3–P14 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Ashburner, C.A. Ball, J.A. Blake, D. Botstein, H. Butler, J.M. Cherry, A.P. Davis, K. Dolinski, S.S. Dwight, J.T. Eppig, M.A. Harris, D.P. Hill, L. Issel-Tarver, A. Kasarskis, S. Lewis, J.C. Matese, J.E. Richardson, M. Ringwald, G.M. Rubin, G. Sherlock, Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet 25(1), 25–29 (2000).  https://doi.org/10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    M. Kanehisa, S. Goto, Y. Sato, M. Furumichi, M. Tanabe, KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40(D1), D109–D114 (2011).  https://doi.org/10.1093/nar/gkr988 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    C.V. Mering, STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31(1), 258–261 (2003).  https://doi.org/10.1093/nar/gkg034 CrossRefGoogle Scholar
  20. 20.
    G. Alanis-Lobato, M.A. Andrade-Navarro, M.H. Schaefer, HIPPIE v2.0: enhancing meaningfulness and reliability of protein–protein interaction networks. Nucleic Acids Res. 45(D1), D408–D414 (2017).  https://doi.org/10.1093/nar/gkw985 CrossRefPubMedGoogle Scholar
  21. 21.
    P. Shannon, A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski, T. Ideker, Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003).  https://doi.org/10.1101/gr.1239303 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    J.M. Wettenhall, G.K. Smyth, limmaGUI: a graphical user interface for linear modeling of microarray data. Bioinformatics 20(18), 3705–3706 (2004).  https://doi.org/10.1093/bioinformatics/bth449 CrossRefPubMedGoogle Scholar
  23. 23.
    Y.E. Nikiforov, M.N. Nikiforova, Molecular genetics and diagnosis of thyroid cancer. Nat. Rev. Endocrin. 7(10), 569–580 (2011).  https://doi.org/10.1038/nrendo.2011.142 CrossRefGoogle Scholar
  24. 24.
    V.A. LiVolsi, Papillary thyroid carcinoma: an update. Mod. Pathol. 24(Suppl 2), S1–S9 (2011).  https://doi.org/10.1038/modpathol.2010.129 CrossRefPubMedGoogle Scholar
  25. 25.
    K. Rue-Albrecht, P.A. McGettigan, B. Hernández, N.C. Nalpas, D.A. Magee, A.C. Parnell, S.V. Gordon, D.E. MacHugh, GOexpress: an R/Bioconductor package for the identification and visualisation of robust gene ontology signatures through supervised learning of gene expression data. BMC Bioinform. 17(1), 126–138 (2016).  https://doi.org/10.1186/s12859-016-0971-3 CrossRefGoogle Scholar
  26. 26.
    C. Puppin, D. Fabbro, M. Dima, C. Di Loreto, E. Puxeddu, S. Filetti, D. Russo, G. Damante, High periostin expression correlates with aggressiveness in papillary thyroid carcinomas. J. Endocrinol. 197(2), 401–408 (2008).  https://doi.org/10.1677/joe-07-0618 CrossRefPubMedGoogle Scholar
  27. 27.
    L.A. Jolly, S. Novitskiy, P. Owens, N. Massoll, N. Cheng, W. Fang, H.L. Moses, A.T. Franco, Fibroblast-mediated collagen remodeling within the tumor microenvironment facilitates progression of thyroid cancers driven by BrafV600E and Pten loss. Cancer Res. 76(7), 1804–1813 (2016).  https://doi.org/10.1158/0008-5472.can-15-2351 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    P. Boffetta, M. Hashibe, C. La Vecchia, W. Zatonski, J. Rehm, The burden of cancer attributable to alcohol drinking. Int. J. Cancer 119(4), 884–887 (2006).  https://doi.org/10.1002/ijc.21903 CrossRefPubMedGoogle Scholar
  29. 29.
    S.-T. Tsai, T.-Y. Wong, C.-Y. Ou, S.-Y. Fang, K.-C. Chen, J.-R. Hsiao, C.-C. Huang, W.-T. Lee, H.-I. Lo, J.-S. Huang, J.-L. Wu, C.-J. Yen, W.-T. Hsueh, Y.-H. Wu, M.-W. Yang, F.-C. Lin, J.-Y. Chang, K.-Y. Chang, S.-Y. Wu, H.-C. Liao, C.-L. Lin, Y.-H. Wang, Y.-L. Weng, H.-C. Yang, J.S. Chang, The interplay between alcohol consumption, oral hygiene, ALDH2 and ADH1B in the risk of head and neck cancer. Int. J. Cancer 135(10), 2424–2436 (2014).  https://doi.org/10.1002/ijc.28885 CrossRefPubMedGoogle Scholar
  30. 30.
    I. Bieche, B. Franc, D. Vidaud, M. Vidaud, R. Lidereau, Analyses of MYC, ERBB2, and CCND1 genes in benign and malignant thyroid follicular cell tumors by real-time polymerase chain reaction. Thyroid 11(2), 147–152 (2001).  https://doi.org/10.1089/105072501300042802 CrossRefPubMedGoogle Scholar
  31. 31.
    G.-Y. Liu, Q. Luo, B. Xiong, C. Pan, P. Yin, H.-F. Liao, W.-C. Zhuang, H.-Z. Gao, Tissue array for Tp53, C-myc, CCND1 gene over-expression in different tumors. World J. Gastroenterol. 14(47), 7199–7207 (2008).  https://doi.org/10.3748/wjg.14.7199 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    J. Sun, R. Shi, S. Zhao, X. Li, S. Lu, H. Bu, X. Ma, C. Su, E2F8, a direct target of miR-144, promotes papillary thyroid cancer progression via regulating cell cycle. J. Exp. Clin. Cancer Res. 36(1), 1–14 (2017).  https://doi.org/10.1186/s13046-017-0504-6 CrossRefGoogle Scholar
  33. 33.
    P.A. Siironen, Ivi, S. Nordling, J. Louhimo, R. Haapiainen, C. Haglund, Immunohistochemical expression of Bcl-2, Ki-67, and p21 in patients with papillary thyroid cancer. Tumor Biol. 26(1), 50–56 (2005).  https://doi.org/10.1159/000084340 CrossRefGoogle Scholar
  34. 34.
    G.H. Xiao, M. Jeffers, A. Bellacosa, Y. Mitsuuchi, W.G. Vande, J.R. Testa, Anti-apoptotic signaling by hepatocyte growth factor/Met via the phosphatidylinositol 3-kinase/Akt and mitogen-activated protein kinase pathways. Proc. Natl Acad. Sci. USA 98(1), 247–252 (2001).  https://doi.org/10.1073/pnas.011532898 CrossRefPubMedGoogle Scholar
  35. 35.
    S. Fan, Y.X. Ma, J.A. Wang, R.Q. Yuan, Q. Meng, Y. Cao, J.J. Laterra, I.D. Goldberg, E.M. Rosen, The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3’ kinase. Oncogene 19(18), 2212–2223 (2000).  https://doi.org/10.1038/sj.onc.1203566 CrossRefPubMedGoogle Scholar
  36. 36.
    P.W. Derksen, D.J. de Gorter, H.P. Meijer, R.J. Bende, M. van Dijk, H.M. Lokhorst, A.C. Bloem, M. Spaargaren, S.T. Pals, The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia 17(4), 764–774 (2003).  https://doi.org/10.1038/sj.leu.2402875 CrossRefPubMedGoogle Scholar
  37. 37.
    S.-N. Jung, H.S. Lim, L. Liu, J.W. Chang, Y.C. Lim, K.S. Rha, B.S. Koo, LAMB3 mediates metastatic tumor behavior in papillary thyroid cancer by regulating c-MET/Akt signals. Sci. Rep. 8(1), 2718–2728 (2018).  https://doi.org/10.1038/s41598-018-21216-0 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    B.S. Koo, J.M. Kim, S.T. Seo, Y.H. Yoon, K.R. Kwon, S.H. Kim, H.W. Kwon, W.J. Bae, Y.C. Lim, Upregulation of HGF and c-MET is associated with subclinical central lymph node metastasis in papillary thyroid microcarcinoma. Ann. Surg. Oncol. 21(7), 2310–2317 (2014).  https://doi.org/10.1245/s10434-014-3553-5 CrossRefPubMedGoogle Scholar
  39. 39.
    Y.-X. Liao, Z.-P. Zhang, J. Zhao, J.-P. Liu, Effects of fibronectin 1 on cell proliferation, senescence and apoptosis of human glioma cells through the PI3K/AKT signaling pathway. Cell. Physiol. Biochem. 48(3), 1382–1396 (2018).  https://doi.org/10.1159/000492096 CrossRefPubMedGoogle Scholar
  40. 40.
    B. Erdogan, M. Ao, L.M. White, A.L. Means, B.M. Brewer, L. Yang, M.K. Washington, C. Shi, O.E. Franco, A.M. Weaver, S.W. Hayward, D. Li, D.J. Webb, Cancer-associated fibroblasts promote directional cancer cell migration by aligning fibronectin. J. Cell Biol. 216(11), 3799–3816 (2017).  https://doi.org/10.1083/jcb.201704053 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    J. Dong, R. Wang, G. Ren, X. Li, J. Wang, Y. Sun, J. Liang, Y. Nie, K. Wu, B. Feng, Y. Shang, D. Fan, HMGA2-FOXL2 axis regulates metastases and epithelial-to-mesenchymal transition of chemoresistant gastric cancer. Clin. Cancer Res. 23(13), 3461–3473 (2017).  https://doi.org/10.1158/1078-0432.CCR-16-2180.CrossRefPubMedGoogle Scholar
  42. 42.
    X.-R. Tang, X. Wen, Q.-M. He, Y.-Q. Li, X.-Y. Ren, X.-J. Yang, J. Zhang, Y.-Q. Wang, J. Ma, N. Liu, MicroRNA-101 inhibits invasion and angiogenesis through targeting ITGA3 and its systemic delivery inhibits lung metastasis in nasopharyngeal carcinoma. Cell Death Dis. 8(1), e2566–e2566 (2017).  https://doi.org/10.1038/cddis.2016.486 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    T. Sakaguchi, H. Yoshino, M. Yonemori, K. Miyamoto, S. Sugita, R. Matsushita, T. Itesako, S. Tatarano, M. Nakagawa, H. Enokida, Regulation of ITGA3 by the dual-stranded microRNA-199 family as a potential prognostic marker in bladder cancer. Br. J. Cancer 116(8), 1077–1087 (2017).  https://doi.org/10.1038/bjc.2017.43 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    G. Zhang, G. Han, X. Zhang, Q. Yu, Z. Li, Z. Li, J. Li, Long non-coding RNA FENDRR reduces prostate cancer malignancy by competitively binding miR-18a-5p with RUNX1. Biomarkers 23(5), 435–445 (2018).  https://doi.org/10.1080/1354750x.2018.1443509 CrossRefPubMedGoogle Scholar
  45. 45.
    Y. Mitsuda, K. Morita, G. Kashiwazaki, J. Taniguchi, T. Bando, M. Obara, M. Hirata, T.R. Kataoka, M. Muto, Y. Kaneda, T. Nakahata, P.P. Liu, S. Adachi, H. Sugiyama, Y. Kamikubo, RUNX1 positively regulates the ErbB2/HER2 signaling pathway through modulating SOS1 expression in gastric cancer cells. Sci. Rep. 8(1), 6423–6436 (2018).  https://doi.org/10.1038/s41598-018-24969-w CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    M. Kulkarni, T.Z. Tan, S.N. Syed, J.M. Lamar, P. Bansal, J. Cui, Y. Qiao, Y. Ito, RUNX1 and RUNX3 protect against YAP-mediated EMT, stem-ness and shorter survival outcomes in breast cancer. Oncotarget 9(18), 14175–14192 (2018).  https://doi.org/10.18632/oncotarget.24419 CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    I.A. Khan, B.H. Yoo, O. Masson, S. Baron, D. Corkery, G. Dellaire, L.D. Attardi, K.V. Rosen, ErbB2-dependent downregulation of a pro-apoptotic protein Perp is required for oncogenic transformation of breast epithelial cells. Oncogene 35(44), 5759–5769 (2016).  https://doi.org/10.1038/onc.2016.109 CrossRefGoogle Scholar
  48. 48.
    V.G. Beaudry, D. Jiang, R.L. Dusek, E.J. Park, S. Knezevich, K. Ridd, H. Vogel, B.C. Bastian, L.D. Attardi, Loss of the p53/p63 regulated desmosomal protein Perp promotes tumorigenesis. PLoS Genet. 6(10), e1001168–e1001185 (2010).  https://doi.org/10.1371/journal.pgen.1001168 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    W. Gao, J.Z. Li, S.Q. Chen, C.Y. Chu, J.Y. Chan, T.S. Wong, BEX3 contributes to cisplatin chemoresistance in nasopharyngeal carcinoma. Cancer Med. 6(2), 439–451 (2017).  https://doi.org/10.1002/cam4.982 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    S.Y. Kim, H.J. Kim, H.J. Kim, D.H. Kim, J.H. Han, H.K. Byeon, K. Lee, C.H. Kim, HSPA5 negatively regulates lysosomal activity through ubiquitination of MUL1 in head and neck cancer. Autophagy 14(3), 385–403 (2018).  https://doi.org/10.1080/15548627.2017.1414126 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    H.A. Chen, Y.W. Chang, C.F. Tseng, C.F. Chiu, C.C. Hong, W. Wang, M.Y. Wang, M. Hsiao, J.T. Ma, C.H. Chen, S.S. Jiang, C.H. Wu, M.C. Hung, M.T. Huang, J.L. Su, E1A-mediated inhibition of HSPA5 suppresses cell migration and invasion in triple-negative breast cancer. Ann. Surg. Oncol. 22(3), 889–898 (2015).  https://doi.org/10.1245/s10434-014-4061-3 CrossRefPubMedGoogle Scholar
  52. 52.
    D. Fiore, M.C. Proto, S. Pisanti, P. Picardi, A.C. Pagano Zottola, S. Butini, S. Gemma, A. Casagni, C. Laezza, M. Vitale, A. Ligresti, V. Di Marzo, D.M. Zisterer, S. Nathwani, D.C. Williams, G. Campiani, P. Gazzerro, M. Bifulco, Antitumor effect of pyrrolo-1,5-benzoxazepine-15 and its synergistic effect with Oxaliplatin and 5-FU in colorectal cancer cells. Cancer Biol. Ther. 17(8), 849–858 (2016).  https://doi.org/10.1080/15384047.2015.1078028 CrossRefPubMedGoogle Scholar
  53. 53.
    M.P. Endsley, R. Thill, I. Choudhry, C.L. Williams, A. Kajdacsy-Balla, W.B. Campbell, K. Nithipatikom, Expression and function of fatty acid amide hydrolase in prostate cancer. Int. J. Cancer 123(6), 1318–1326 (2008).  https://doi.org/10.1002/ijc.23674 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    G. Chernaya, N. Mikhno, T. Khabalova, S. Svyatchenko, L. Mostovich, S. Shevchenko, L. Gulyaeva, The expression profile of integrin receptors and osteopontin in thyroid malignancies varies depending on the tumor progression rate and presence of BRAF V600E mutation. Surg. Oncol. 27(4), 702–708 (2018).  https://doi.org/10.1016/j.suronc.2018.09.007 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Endocrinology and MetabolismZhongshan Hospital, Fudan UniversityShanghaiChina
  2. 2.Department of EndocrinologyJinshan Hospital, Fudan UniversityShanghaiChina
  3. 3.The Graduate School of Fujian Medical UniversityFuZhouChina

Personalised recommendations