Advertisement

Endocrine

pp 1–10 | Cite as

Dysregulated expression of long noncoding RNAs serves as diagnostic biomarkers of type 2 diabetes mellitus

  • Weiyue Zhang
  • Juan Zheng
  • Xiang Hu
  • Lulu ChenEmail author
Meta Analysis
  • 114 Downloads

Abstract

Purpose

Long noncoding RNAs (LncRNAs) are widely investigated in various diseases as a novel type of biomarkers. We aimed to elucidate the diagnostic values of lncRNAs in patients with type 2 diabetes mellitus (T2DM).

Methods

We comprehensively searched PubMed, Web of Science, EMBASE, CBM, Scopus, and the Cochrane Library databases from the inception to 3 January 2019. Studies concerning the association between lncRNAs expression and diagnostic outcomes in type 2 diabetes mellitus patients were included. We employed pooled odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate diagnostic parameters.

Results

Seven relevant studies were eligible in our study. The pooled results showed that lncRNAs performed the area under the curve (AUC) of 0.73 (95%Cl: 0.69–0.77), with sensitivity of 0.71 (95%Cl: 0.64–0.77) and specificity of 0.66 (95%Cl: 0.60–0.71) in discriminating type 2 diabetes from healthy controls. As for prediabetes, lncRNAs conducted AUC of 0.75 with 76% sensitivity and 64% specificity. Moreover, subgroup analysis based on expression levels of lncRNAs, sample sizes, and specimen of eligible studies were further performed.

Conclusions

This study indicates that lncRNAs may serve as promising indicators for diagnostic evaluation of T2DM patients.

Keywords

Long noncoding RNA Type 2 diabetes mellitus Diagnosis Meta-analysis. 

Notes

Authors’ contributions

Study conception and design: Z.W.Y., Z.J. and C.L.L. Acquisition of data: Z.W.Y., Z.J., H.X. and C.L.L. Analysis of data: Z.W.Y., Z.J. Paper drafting: Z.W.Y., C.L.L. Critical appraisal of paper: C.L.L. All the authors have approved the final paper to be published.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12020_2019_2015_MOESM1_ESM.docx (229 kb)
Supplementary Information

References

  1. 1.
    C.J. Nolan, P. Damm, M. Prentki, Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet 378(9786), 169–181 (2011).  https://doi.org/10.1016/S0140-6736(11)60614-4 CrossRefGoogle Scholar
  2. 2.
    R.B. Prasad, L. Groop, Genetics of type 2 diabetes-pitfalls and possibilities. Genes 6(1), 87–123 (2015).  https://doi.org/10.3390/genes6010087 CrossRefGoogle Scholar
  3. 3.
    A. Chawla, R. Chawla, S. Jaggi, Microvasular and macrovascular complications in diabetes mellitus: distinct or continuum? Indian J. Endocrinol. Metab. 20(4), 546–551 (2016).  https://doi.org/10.4103/2230-8210.183480 CrossRefGoogle Scholar
  4. 4.
    A. Bonnefond, P. Froguel, Rare and common genetic events in type 2 diabetes: what should biologists know? Cell Metab. 21(3), 357–368 (2015).  https://doi.org/10.1016/j.cmet.2014.12.020 CrossRefGoogle Scholar
  5. 5.
    C.P. Ponting, P.L. Oliver, W. Reik, Evolution and functions of long noncoding RNAs. Cell 136(4), 629–641 (2009).  https://doi.org/10.1016/j.cell.2009.02.006 CrossRefGoogle Scholar
  6. 6.
    P. Carninci, T. Kasukawa, S. Katayama, J. Gough, M.C. Frith, N. Maeda, R. Oyama, T. Ravasi, B. Lenhard, C. Wells, R. Kodzius, K. Shimokawa, V.B. Bajic, S.E. Brenner, S. Batalov, A.R. Forrest, M. Zavolan, M.J. Davis, L.G. Wilming, V. Aidinis, J.E. Allen, A. Ambesi-Impiombato, R. Apweiler, R.N. Aturaliya, T.L. Bailey, M. Bansal, L. Baxter, K.W. Beisel, T. Bersano, H. Bono, A.M. Chalk, K.P. Chiu, V. Choudhary, A. Christoffels, D.R. Clutterbuck, M.L. Crowe, E. Dalla, B.P. Dalrymple, B. de Bono, G.Della. Gatta, D. di Bernardo, T. Down, P. Engstrom, M. Fagiolini, G. Faulkner, C.F. Fletcher, T. Fukushima, M. Furuno, S. Futaki, M. Gariboldi, P. Georgii-Hemming, T.R. Gingeras, T. Gojobori, R.E. Green, S. Gustincich, M. Harbers, Y. Hayashi, T.K. Hensch, N. Hirokawa, D. Hill, L. Huminiecki, M. Iacono, K. Ikeo, A. Iwama, T. Ishikawa, M. Jakt, A. Kanapin, M. Katoh, Y. Kawasawa, J. Kelso, H. Kitamura, H. Kitano, G. Kollias, S.P. Krishnan, A. Kruger, S.K. Kummerfeld, I.V. Kurochkin, L.F. Lareau, D. Lazarevic, L. Lipovich, J. Liu, S. Liuni, S. McWilliam, M.Madan. Babu, M. Madera, L. Marchionni, H. Matsuda, S. Matsuzawa, H. Miki, F. Mignone, S. Miyake, K. Morris, S. Mottagui-Tabar, N. Mulder, N. Nakano, H. Nakauchi, P. Ng, R. Nilsson, S. Nishiguchi, S. Nishikawa, F. Nori, O. Ohara, Y. Okazaki, V. Orlando, K.C. Pang, W.J. Pavan, G. Pavesi, G. Pesole, N. Petrovsky, S. Piazza, J. Reed, J.F. Reid, B.Z. Ring, M. Ringwald, B. Rost, Y. Ruan, S.L. Salzberg, A. Sandelin, C. Schneider, C. Schonbach, K. Sekiguchi, C.A. Semple, S. Seno, L. Sessa, Y. Sheng, Y. Shibata, H. Shimada, K. Shimada, D. Silva, B. Sinclair, S. Sperling, E. Stupka, K. Sugiura, R. Sultana, Y. Takenaka, K. Taki, K. Tammoja, S.L. Tan, S. Tang, M.S. Taylor, J. Tegner, S.A. Teichmann, H.R. Ueda, E. van Nimwegen, R. Verardo, C.L. Wei, K. Yagi, H. Yamanishi, E. Ueda, S. Zhu, A. Zimmer, W. Hide, C. Bult, S.M. Grimmond, R.D. Teasdale, E.T. Liu, V. Brusic, J. Quackenbush, C. Wahlestedt, J.S. Mattick, D.A. Hume, C. Kai, D. Sasaki, Y. Tomaru, S. Fukuda, M. Kanamori-Katayama, M. Suzuki, J. Aoki, T. Arakawa, J. Iida, K. Imamura, M. Itoh, T. Kato, H. Kawaji, N. Kawagashira, T. Kawashima, M. Kojima, S. Kondo, H. Konno, K. Nakano, N. Ninomiya, T. Nishio, M. Okada, C. Plessy, K. Shibata, T. Shiraki, S. Suzuki, M. Tagami, K. Waki, A. Watahiki, Y. Okamura-Oho, H. Suzuki, J. Kawai, F.Y. Hayashizaki,FANTOM Consortium; RIKEN Genome Exploration Research Group and Genome Science Group (Genome Network Project Core Group, The transcriptional landscape of the mammalian genome. Science 309(5740), 1559–1563 (2005).  https://doi.org/10.1126/science.1112014 CrossRefGoogle Scholar
  7. 7.
    C.J. Li, Y. Xiao, M. Yang, T. Su, X. Sun, Q. Guo, Y. Huang, X.H. Luo, Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J. Clin. Investig. 128(12), 5251–5266 (2018).  https://doi.org/10.1172/jci99044 CrossRefGoogle Scholar
  8. 8.
    A. Fatica, I. Bozzoni, Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15(1), 7–21 (2014).  https://doi.org/10.1038/nrg3606 CrossRefGoogle Scholar
  9. 9.
    L. Li, T. Feng, Y. Lian, G. Zhang, A. Garen, X. Song, Role of human noncoding RNAs in the control of tumorigenesis. Proc. Natl. Acad. Sci. USA 106(31), 12956–12961 (2009).  https://doi.org/10.1073/pnas.0906005106 CrossRefGoogle Scholar
  10. 10.
    M. Huarte, The emerging role of lncRNAs in cancer. Nat. Med. 21(11), 1253–1261 (2015).  https://doi.org/10.1038/nm.3981 CrossRefGoogle Scholar
  11. 11.
    R. Castro-Oropeza, J. Melendez-Zajgla, V. Maldonado, K. Vazquez-Santillan, The emerging role of lncRNAs in the regulation of cancer stem cells. Cell. Oncol. 41(6), 585–603 (2018).  https://doi.org/10.1007/s13402-018-0406-4 CrossRefGoogle Scholar
  12. 12.
    S.D. Feng, J.H. Yang, C.H. Yao, S.S. Yang, Z.M. Zhu, D. Wu, H.Y. Ling, L. Zhang, Potential regulatory mechanisms of lncRNA in diabetes and its complications. Biochem. Cell Biol. 95(3), 361–367 (2017).  https://doi.org/10.1139/bcb-2016-0110 CrossRefGoogle Scholar
  13. 13.
    X. Sun, D. Wong, Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. Am. J. Cardiovasc. Dis. 6(2), 17–25 (2016)Google Scholar
  14. 14.
    M. Knoll, H.F. Lodish, L. Sun, Long non-coding RNAs as regulators of the endocrine system. Nat. Rev. Endocrinol. 11(3), 151–160 (2015).  https://doi.org/10.1038/nrendo.2014.229 CrossRefGoogle Scholar
  15. 15.
    J.P. Higgins, S.G. Thompson, Quantifying heterogeneity in a meta-analysis. Stat. Med. 21(11), 1539–1558 (2002).  https://doi.org/10.1002/sim.1186 CrossRefGoogle Scholar
  16. 16.
    M. Erfanian Omidvar, H. Ghaedi, F. Kazerouni, S. Kalbasi, M. Shanaki, G. Miraalamy, A. Zare, A. Rahimipour, Clinical significance of long noncoding RNA VIM-AS1 and CTBP1-AS2 expression in type 2 diabetes. J. Cell. Biochem., (2018).  https://doi.org/10.1002/jcb.28206
  17. 17.
    L. Saeidi, H. Ghaedi, M. Sadatamini, R. Vahabpour, A. Rahimipour, M. Shanaki, Z. Mansoori, Long non-coding RNA LY86-AS1 and HCG27_201 expression in type 2 diabetes mellitus. Mol. Biol. Rep. (2018).  https://doi.org/10.1007/s11033-018-4429-8
  18. 18.
    Z. Mansoori, H. Ghaedi, M. Sadatamini, R. Vahabpour, A. Rahimipour, M. Shanaki, L. Saeidi, F. Kazerouni, Downregulation of long non-coding RNAs LINC00523 and LINC00994 in type 2 diabetes in an Iranian cohort. Mol. Biol. Rep. 45(5), 1227–1233 (2018).  https://doi.org/10.1007/s11033-018-4276-7 CrossRefGoogle Scholar
  19. 19.
    L. Wang, N. Su, Y. Zhang, G. Wang, Clinical significance of serum lncRNA cancer susceptibility candidate 2 (CASC2) for chronic renal failure in patients with type 2 diabetes. Med. Sci. Monit. 24, 6079–6084 (2018).  https://doi.org/10.12659/MSM.909510 CrossRefGoogle Scholar
  20. 20.
    Q. Yin, A. Wu, M. Liu, Plasma long non-coding RNA (lncRNA) GAS5 is a new biomarker for coronary artery disease. Med. Sci. Monit. 23, 6042–6048 (2017)CrossRefGoogle Scholar
  21. 21.
    G. Carter, B. Miladinovic, A.A. Patel, L. Deland, S. Mastorides, N.A. Patel, Circulating long noncoding RNA GAS5 levels are correlated to prevalence of type 2 diabetes mellitus. BBA Clin. 4, 102–107 (2015).  https://doi.org/10.1016/j.bbacli.2015.09.001 CrossRefGoogle Scholar
  22. 22.
    X. Li, Z. Zhao, C. Gao, L. Rao, P. Hao, D. Jian, W. Li, H. Tang, M. Li, The diagnostic value of whole blood lncRNA ENST00000550337.1 for prediabetes and type 2 diabetes mellitus. Exp. Clin. Endocrinol. Diabetes 125(6), 377–383 (2017).  https://doi.org/10.1055/s-0043-100018 CrossRefGoogle Scholar
  23. 23.
    J.J. Deeks, P. Macaskill, L. Irwig, The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J. Clin. Epidemiol. 58(9), 882–893 (2005).  https://doi.org/10.1016/j.jclinepi.2005.01.016 CrossRefGoogle Scholar
  24. 24.
    J.N. Utumatwishima, S.T. Chung, A.R. Bentley, M. Udahogora, A.E. Sumner, Reversing the tide—diagnosis and prevention of T2DM in populations of African descent. Nat. Rev. Endocrinol. 14(1), 45–56 (2018).  https://doi.org/10.1038/nrendo.2017.127 CrossRefGoogle Scholar
  25. 25.
    C.Herder,B. Kowall, A.G. Tabak, W. Rathmann, The potential of novel biomarkers to improve risk prediction of type 2 diabetes. Diabetologia 57(1), 16–29 (2014).  https://doi.org/10.1007/s00125-013-3061-3 CrossRefGoogle Scholar
  26. 26.
    L. Eliasson, J.L. Esguerra, Role of non-coding RNAs in pancreatic beta-cell development and physiology. Acta Physiol. 211(2), 273–284 (2014).  https://doi.org/10.1111/apha.12285 CrossRefGoogle Scholar
  27. 27.
    N. Goyal, D. Kesharwani, M. Datta, Lnc-ing non-coding RNAs with metabolism and diabetes: roles of lncRNAs. Cell. Mol. life Sci. 75(10), 1827–1837 (2018).  https://doi.org/10.1007/s00018-018-2760-9 CrossRefGoogle Scholar
  28. 28.
    G.L. Ding, F.F. Wang, J. Shu, S. Tian, Y. Jiang, D. Zhang, N. Wang, Q. Luo, Y. Zhang, F. Jin, P.C. Leung, J.Z. Sheng, H.F. Huang, Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes 61(5), 1133–1142 (2012).  https://doi.org/10.2337/db11-1314 CrossRefGoogle Scholar
  29. 29.
    I. Moran, I. Akerman, M. van de Bunt, R. Xie, M. Benazra, T. Nammo, L. Arnes, N. Nakic, J. Garcia-Hurtado, S. Rodriguez-Segui, L. Pasquali, C. Sauty-Colace, A. Beucher, R. Scharfmann, J. van Arensbergen, P.R. Johnson, A. Berry, C. Lee, T. Harkins, V. Gmyr, F. Pattou, J. Kerr-Conte, L. Piemonti, T. Berney, N. Hanley, A.L. Gloyn, L. Sussel, L. Langman, K.L. Brayman, M. Sander, M.I. McCarthy, P. Ravassard, J. Ferrer, Human beta cell transcriptome analysis uncovers lncRNAs that are tissue-specific, dynamically regulated, and abnormally expressed in type 2 diabetes. Cell Metab. 16(4), 435–448 (2012).  https://doi.org/10.1016/j.cmet.2012.08.010 CrossRefGoogle Scholar
  30. 30.
    X. Zhu, Y.B. Wu, J. Zhou, D.M. Kang, Upregulation of lncRNA MEG3 promotes hepatic insulin resistance via increasing FoxO1 expression. Biochem. Biophys. Res. Commun. 469(2), 319–325 (2016).  https://doi.org/10.1016/j.bbrc.2015.11.048 CrossRefGoogle Scholar
  31. 31.
    M.L. Alvarez, J.K. DiStefano, Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS ONE 6(4), e18671 (2011).  https://doi.org/10.1371/journal.pone.0018671 CrossRefGoogle Scholar
  32. 32.
    J.Y. Liu, J. Yao, X.M. Li, Y.C. Song, X.Q. Wang, Y.J. Li, B. Yan, Q. Jiang, Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis. 5, e1506 (2014).  https://doi.org/10.1038/cddis.2014.466 CrossRefGoogle Scholar
  33. 33.
    G.Z. Qiu, W. Tian, H.T. Fu, C.P. Li, B. Liu, Long noncoding RNA-MEG3 is involved in diabetes mellitus-related microvascular dysfunction. Biochem. Biophys. Res. Commun. 471(1), 135–141 (2016).  https://doi.org/10.1016/j.bbrc.2016.01.164 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019 2019
corrected publication 2019

Authors and Affiliations

  1. 1.Department of Endocrinology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations