, Volume 66, Issue 2, pp 266–277 | Cite as

Hypothyroidism-related zinc deficiency leads to suppression of T lymphocyte activity

  • María Alejandra Paulazo
  • Alicia Juana Klecha
  • Helena Andrea Sterle
  • Eduardo Valli
  • Horacio Torti
  • Florencia Cayrol
  • María Laura Barreiro Arcos
  • Graciela Alicia CremaschiEmail author
Original Article



Hypothyroidism has been shown to induce immunosuppression and both the thyroid status and immunity are affected by zinc deficiency. However, the impact of hypothyroidism on zinc metabolism and its possible relationship with the immune status has not yet been deeply explored. Here, our aim was to study whether hypothyroidism may alter zinc metabolism and thus lead to the impairment of T lymphocyte activity.


Variations in the distribution of zinc in the body were evaluated in PTU-treated hypothyroid mice. The effects of hypothyroidism and zinc deficiency were studied on T lymphocyte proliferation after stimulation both in vitro and in vivo. For in vitro assays, thyroid hormone-free or zinc chelator (TPEN or DTPA)-supplemented media were used. For in vivo assays, lymphocyte activity was evaluated in cells from hypothyroid, T3-treated, and zinc-supplemented mice.


Hypothyroid mice showed lower levels of zinc in femur and lymph nodes than controls. T3 and zinc supplementation reversed these effects. In vitro, both thyroid hormone and zinc deficiency led to a decreased response to mitogen stimulation. However, only zinc deficiency was able to induce lymphocyte apoptosis. Mitogen-stimulated T cells from hypothyroid mice showed impaired proliferation, accompanied by decreased activation of PKC and lower levels of p-ERK, effects that were reversed by T3 replacement or zinc supplementation.


Our results show an important role of zinc deficiency in hypothyroid-mediated T-cell suppression and suggest the importance of evaluating zinc levels and restoring them when necessary to maintain an efficient immune response in hypothyroid patients.


Hypothyroidism Zinc Thyroid hormones T lymphocytes 



This work was supported by the National Research Council of Argentina (PIP-CONICET 00275), the University of Buenos Aires (UBACYT 20020130100289BA), the National Agency for Science and Technology (ANPCYT, PICT 2015–0874)


This study was funded by the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) Argentina, PIP-CONICET 00275; the Universidad de Buenos Aires, UBACYT 20020130100289BA and the Fondo para la Investigación Científica y Tecnológica (FONCYT) PICT 2015-0874.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All studies using animals were performed in accordance with the ARRIVE Guidelines [21] and all the experimental protocols were approved by the Institutional Committee for the Care and Use of Laboratory Animals (CICUAL) of the School of Pharmacy and Biochemistry of the University of Buenos Aires and the CICUAL of BIOMED. This article does not contain any studies with human participants performed by any of the authors.

Supplementary material

12020_2019_1936_MOESM1_ESM.docx (13 kb)
Supplementary Figure S1.
Supplementary Figure S1.


  1. 1.
    P. De Vito, S. Incerpi, J.Z. Pedersen, P. Luly, F.B. Davis, P.J. Davis, Thyroid hormones as modulators of immune activities at the cellular level. Thyroid 2, 879–890 (2011)Google Scholar
  2. 2.
    A.J. Klecha, A.M. Genaro, G. Gorelik, M.L. Barreiro Arcos, D.M. Silberman, M. Schuman, S.I. Garcia, C. Pirola, G.A. Cremaschi, Integrative study of hypothalamus-pituitary-thyroid-immune system interaction: thyroid hormone-mediated modulation of lymphocyte activity through the protein kinase C signaling pathway. J. Endocrinol. 189, 45–55 (2006)PubMedGoogle Scholar
  3. 3.
    A.J. Klecha, A.M. Genaro, A.E. Lysionek, R.A. Caro, A.G. Coluccia, G.A. Cremaschi, Experimental evidence pointing to the bidirectional interaction between the immune system and the thyroid axis. Int. J. Immunopharmacol. 22, 491–500 (2000)PubMedGoogle Scholar
  4. 4.
    E.L. Jara, N. Munoz-Durango, C. Llanos, C. Fardella, P.A. Gonzalez, S.M. Bueno, A.M. Kalergis, C.A. Riedel, Modulating the function of the immune system by thyroid hormones and thyrotropin. Immunol. Lett. 184, 76–83 (2017)PubMedGoogle Scholar
  5. 5.
    N. Wellinghausen, H. Kirchner, L. Rink, The immunobiology of zinc. Immunol. Today 18, 519–521 (1997)PubMedGoogle Scholar
  6. 6.
    N.Z. Gammoh, L. Rink, Zinc in infection and inflammation. Nutrients 9, E624 (2017). piiPubMedGoogle Scholar
  7. 7.
    H. Haase, L. Rink, Multiple impacts of zinc on immune function. Metallomics 6, 1175–1180 (2014)PubMedGoogle Scholar
  8. 8.
    S. Hojyo, S.T. Fukada, T. Roles, Roles of zinc signaling in the immune system. J. Immunol. Res. 2016, 6762343 (2016).PubMedPubMedCentralGoogle Scholar
  9. 9.
    E. John, T.C. Laskow, W.J. Buchser, B.R. Pitt, P.H. Basse, L.H. Butterfield, P. Kalinski, M.T. Lotze, Zinc in innate and adaptive tumor immunity. J. Transl. Med. 8, 118 (2010)PubMedPubMedCentralGoogle Scholar
  10. 10.
    M.J. Salgueiro, M. Zubillaga, A. Lysionek, G. Cremaschi, C.G. Goldman, R. Caro, T. De Paoli, A. Hager, R. Weill, J. Boccio, Zinc status and immune system relationship: a review. Biol. Trace Elem. Res. 76, 193–205 (2000)PubMedGoogle Scholar
  11. 11.
    A.J. Klecha, J. Salgueiro, M. Wald, J. Boccio, M. Zubillaga, N.M. Leonardi, G. Gorelik, G.A. Cremaschi, In vivo iron and zinc deficiency diminished T- and B-selective mitogen stimulation of murine lymphoid cells through protein kinase C-mediated mechanism. Biol. Trace Elem. Res. 104, 173–183 (2005)PubMedGoogle Scholar
  12. 12.
    T.B. Aydemir, J.P. Liuzzi, S. McClellan, R.J. Cousins, Zinc transporter ZIP8 (SLC39A8) and zinc influence IFN-gamma expression in activated human T cells. J. Leukoc. Biol. 86, 337–348 (2009)PubMedPubMedCentralGoogle Scholar
  13. 13.
    J. Kaltenberg, L.M. Plum, J.L. Ober-Blobaum, A. Honscheid, L. Rink, H. Haase, Zinc signals promote IL-2-dependent proliferation of T cells. Eur. J. Immunol. 40, 1496–1503 (2010)PubMedGoogle Scholar
  14. 14.
    M. Yu, W.W. Lee, D. Tomar, S. Pryshchep, M. Czesnikiewicz-Guzik, D.L. Lamar, G. Li, K. Singh, L. Tian, C.M. Weyand, J.J. Goronzy, Regulation of T cell receptor signaling by activation-induced zinc influx. J. Exp. Med. 208, 775–785 (2011)PubMedPubMedCentralGoogle Scholar
  15. 15.
    S. Ertek, A.F. Cicero, O. Caglar, G. Erdogan, Relationship between serum zinc levels, thyroid hormones and thyroid volume following successful iodine supplementation. Hormones 9, 263–268 (2010)PubMedGoogle Scholar
  16. 16.
    S.M. O’Kane, M.S. Mulhern, L.K. Pourshahidi, J.J. Strain, A.J. Yeates, Micronutrients, iodine status and concentrations of thyroid hormones: a systematic review. Nutr. Rev. 76, 418–431 (2018)PubMedGoogle Scholar
  17. 17.
    A. Betsy, M. Binitha, S. Sarita, Zinc deficiency associated with hypothyroidism: an overlooked cause of severe alopecia. Int. J. Trichol. 5, 40–42 (2013)Google Scholar
  18. 18.
    H.C. Freake, K.E. Govoni, K. Guda, C. Huang, S.A. Zinn, Actions and interactions of thyroid hormone and zinc status in growing rats. J. Nutr. 131, 1135–1141 (2001)PubMedGoogle Scholar
  19. 19.
    M. Ruz, J. Codoceo, J. Galgani, L. Munoz, N. Gras, S. Muzzo, L. Leiva, C. Bosco, Single and multiple selenium-zinc-iodine deficiencies affect rat thyroid metabolism and ultrastructure. J. Nutr. 129, 174–180 (1999)PubMedGoogle Scholar
  20. 20.
    S.M. Chen, C.D. Kuo, L.T. Ho, J.F. Liao, Effect of hypothyroidism on intestinal zinc absorption and renal zinc disposal in five-sixths nephrectomized rats. Jpn. J. Physiol. 55, 211–219 (2005)PubMedGoogle Scholar
  21. 21.
    C. Kilkenny, W.J. Browne, I.C. Cuthill, M. Emerson, D.G. Altman, Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol. 8, e1000412 (2010)PubMedPubMedCentralGoogle Scholar
  22. 22.
    H.A. Sterle, E. Valli, F. Cayrol, M.A. Paulazo, D.J. Martinel Lamas, M.C. Diaz Flaqué, A.J. Klecha, L. Colombo, V.A. Medina, G.A. Cremaschi, M.L. Barreiro Arcos, Thyroid status modulates T lymphoma growth via cell cycle regulatory proteins and angiogenesis. J. Endocrinol. 222, 243–255 (2014)PubMedGoogle Scholar
  23. 23.
    A.K. Baltaci, C.S. Bediz, R. Mogulkoc, E. Kurtoglu, A. Pekel, Effect of zinc and melatonin supplementation on cellular immunity in rats with toxoplasmosis. Biol. Trace Elem. Res. 96, 237–245 (2003)PubMedGoogle Scholar
  24. 24.
    A. Sivrikaya, A. Sivrikaya, M. Bicer, M. Akil, A.K. Baltaci, R. Mogulkoc, Effects of zinc supplementation on the element distribution in kidney tissue of diabetic rats subjected to acute swimming. Biol. Trace Elem. Res. 147, 195–199 (2012)PubMedGoogle Scholar
  25. 25.
    P.G. Reeves, F.H. Nielsen, G.C. Fahey, Jr., AIN-93 purified diets for laboratory rodents: final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123, 1939–1951 (1993).PubMedGoogle Scholar
  26. 26.
    L. Rink, P. Gabriel, Extracellular and immunological actions of zinc. Biometals 14, 367–383 (2001)PubMedGoogle Scholar
  27. 27.
    M.L. Barreiro Arcos, G. Gorelik, A. Klecha, A.M. Genaro, G.A. Cremaschi, Thyroid hormones increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes. Am. J. Physiol. Cell. Physiol. 291, C327–C336 (2006)PubMedGoogle Scholar
  28. 28.
    A.K. Baltaci, R. Mogulkoc, M. Belviranli, Serum levels of calcium, selenium, magnesium, phosphorus, chromium, copper and iron--their relation to zinc in rats with induced hypothyroidism. Acta Clin. Croat. 52, 151–156 (2013)PubMedGoogle Scholar
  29. 29.
    M. Belviranli, A.K. Baltaci, The relation between reduced serum melatonin levels and zinc in rats with induced hypothyroidism. Cell Biochem. Funct. 26, 19–23 (2008)PubMedGoogle Scholar
  30. 30.
    G. Bellisola, P. Bratter, G. Cinque, G. Francia, S. Galassini, D. Gawlik, V.E. Negretti de Brätter, L. Azzolina, The TSH-dependent variation of the essential elements iodine, selenium and zinc within human thyroid tissues. J. Trace Elem. Med. Biol. 12, 177–182 (1998)PubMedGoogle Scholar
  31. 31.
    L.F. Marques, C.M. Donangelo, J.G. Franco, L. Pires, A.S. Luna, G. Casimiro-Lopes, P.C. Lisboa, J.C. Koury, Plasma zinc, copper, and serum thyroid hormones and insulin levels after zinc supplementation followed by placebo in competitive athletes. Biol. Trace Elem. Res. 142, 415–423 (2011)PubMedGoogle Scholar
  32. 32.
    G.A. Kandhro, T.G. Kazi, H.I. Afridi, N. Kazi, J.A. Baig, M.B. Arain, Sirajuddin, A.Q. Shah, R.A. Sarfraz, M.K. Jamali, N. Syed, Effect of zinc supplementation on the zinc level in serum and urine and their relation to thyroid hormone profile in male and female goitrous patients. Clin. Nutr. 28, 162–168 (2009)PubMedGoogle Scholar
  33. 33.
    V.M. Kolenko, R.G. Uzzo, N. Dulin, E. Hauzman, R. Bukowski, J.H. Finke, Mechanism of apoptosis induced by zinc deficiency in peripheral blood T lymphocytes. Apoptosis 6, 419–429 (2001)PubMedGoogle Scholar
  34. 34.
    M. Marini, F. Frabetti, S. Canaider, L. Dini, E. Falcieri, G.G. Poirier, Modulation of caspase-3 activity by zinc ions and by the cell redox state. Exp. Cell Res. 266, 323–332 (2001)PubMedGoogle Scholar
  35. 35.
    J.B. Barnett, M.C. Dao, D.H. Hamer, R. Kandel, G. Brandeis, D. Wu, G.E. Dallal, P.F. Jacques, R. Schreiber, E. Kong, S.N. Meydani, Effect of zinc supplementation on serum zinc concentration and T cell proliferation in nursing home elderly: a randomized, double-blind, placebo-controlled trial. Am. J. Clin. Nutr. 103, 942–951 (2016)PubMedGoogle Scholar
  36. 36.
    S. Mihara, N. Suzuki, S. Wakisaka, S. Suzuki, N. Sekita, S. Yamamoto, N. Saito, T. Hoshino, T. Sakane, Effects of thyroid hormones on apoptotic cell death of human lymphocytes. J. Clin. Endocrinol. Metab. 84, 1378–1385 (1999)PubMedGoogle Scholar
  37. 37.
    H.A. Sterle, M.L. Barreiro Arcos, E. Valli, M.A. Paulazo, S.P. Mendez Huergo, A.G. Blidner, F. Cayrol, M.C. Díaz Flaqué, A.J. Klecha, V.A. Medina, L. Colombo, G.A. Rabinovich, G.A. Cremaschi, The thyroid status reprograms T cell lymphoma growth and modulates immune cell frequencies. J. Mol. Med. 94, 417–429 (2016)PubMedGoogle Scholar
  38. 38.
    M.L. Barreiro Arcos, H.A. Sterle, C. Vercelli, E. Valli, M.F. Cayrol, A.J. Klecha, M.A. Paulazo, M.C. Diaz Flaqué, A.M. Franchi, G.A. Cremaschi, Induction of apoptosis in T lymphoma cells by long-term treatment with thyroxine involves PKCzeta nitration by nitric oxide synthase. Apoptosis 18, 1376–1390 (2013)PubMedGoogle Scholar
  39. 39.
    K. Hayashi, A. Altman, Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol. Res. 55, 537–544 (2007)PubMedPubMedCentralGoogle Scholar
  40. 40.
    A. Honscheid, L. Rink, H. Haase, T-lymphocytes: a target for stimulatory and inhibitory effects of zinc ions. Endocr. Metab. Immune Disord. Drug Targets 9, 132–144 (2009)PubMedGoogle Scholar
  41. 41.
    D. Daaboul, E. Rosenkranz, P. Uciechowski, L. Rink, Repletion of zinc in zinc-deficient cells strongly up-regulates IL-1beta-induced IL-2 production in T-cells. Metallomics 4, 1088–1097 (2012)PubMedGoogle Scholar
  42. 42.
    C.A. Campo, N. Wellinghausen, C. Faber, A. Fischer, L. Rink, Zinc inhibits the mixed lymphocyte culture. Biol. Trace Elem. Res. 79, 15–22 (2001)PubMedGoogle Scholar
  43. 43.
    C. Faber, P. Gabriel, K.H. Ibs, L. Rink, Zinc in pharmacological doses suppresses allogeneic reaction without affecting the antigenic response. Bone Marrow Transplant. 33, 1241–1246 (2004)PubMedGoogle Scholar
  44. 44.
    M. Maywald, L. Rink, Zinc supplementation induces CD4 + CD25 + Foxp3 + antigen-specific regulatory T cells and suppresses IFN-gamma production by upregulation of Foxp3 and KLF-10 and downregulation of IRF-1. Eur. J. Nutr. 56, 1859–1869 (2017)PubMedGoogle Scholar
  45. 45.
    M. Erdogan, Y.S. Ilhan, M.A. Akkus, S.A. Caboglu, I. Ozercan, N. Ilhan, M. Yaman, Effects of L-thyroxine and zinc therapy on wound healing in hypothyroid rats. Acta Chir. Belg. 99, 72–77 (1999)PubMedGoogle Scholar
  46. 46.
    I. Bucci, G. Napolitano, C. Giuliani, S. Lio, A. Minnucci, F. Di Giacomo, G. Calabrese, G. Sabatino, G. Palka, F. Monaco, Zinc sulfate supplementation improves thyroid function in hypozincemic Down children. Biol. Trace Elem. Res. 67, 257–268 (1999)PubMedGoogle Scholar
  47. 47.
    R. Carsetti, D. Valentini, V. Marcellini, M. Scarsella, E. Marasco, F. Giustini, A. Bartuli, A. Villani, A.G. Ugazio, Reduced numbers of switched memory B cells with high terminal differentiation potential in Down syndrome. Eur. J. Immunol. 45, 903–914 (2015)PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • María Alejandra Paulazo
    • 1
  • Alicia Juana Klecha
    • 1
    • 2
  • Helena Andrea Sterle
    • 1
  • Eduardo Valli
    • 1
  • Horacio Torti
    • 2
  • Florencia Cayrol
    • 1
  • María Laura Barreiro Arcos
    • 1
  • Graciela Alicia Cremaschi
    • 1
    • 2
    Email author
  1. 1.Instituto de Investigaciones Biomédicas (BIOMED), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Ciencias MédicasPontificia Universidad Católica Argentina (UCA)Buenos AiresArgentina
  2. 2.Cátedra de Física, Facultad de Farmacia y BioquímicaUniversidad de Buenos AiresCiudad Autónoma de Buenos AiresArgentina

Personalised recommendations