Advertisement

Endocrine

pp 1–8 | Cite as

Enhanced hepatic cholesterol accumulation induced by maternal betaine exposure is associated with hypermethylation of CYP7A1 gene promoter

  • Nannan Zhao
  • Shu Yang
  • Yue Feng
  • Bo Sun
  • Ruqian ZhaoEmail author
Original Article
  • 87 Downloads

Abstract

Purpose

Betaine contains three methyl groups and plays a critical role in regulating glucose and lipid metabolism via epigenetic modifications. However, it is unclear whether prenatal betaine intake could affect cholesterol metabolism of progeny through DNA methylation.

Methods

Hence, pregnant rats were randomly divided into control and betaine groups fed standard diet or 1% betaine supplementation diet, respectively, throughout gestation and lactation.

Results

Maternal betaine exposure significantly (P < 0.05) increased serum and hepatic cholesterol contents but not triglyceride levels in offspring rats. Accordantly, maternal intake of betaine markedly downregulated (P < 0.05) hepatic cholesterol 7 alpha-hydroxylase (CYP7A1) expression at both the mRNA and protein level, while the protein content of low-density lipoprotein receptor (LDLR) was upregulated in the liver of betaine-exposed rats. In addition, prenatal betaine supplementation extremely increased (P < 0.05) hepatic betaine-homocysteine methyltransferase (BHMT) expression at the mRNA and protein level but not affected the expression of other key enzymes involved in methionine metabolism. Furthermore, hepatic hypermethylation of CYP7A1 gene promoter was observed in progeny rats derived from betaine-supplemented dams.

Conclusions

Our results provide evidence that maternal betaine supplementation significantly enhances hepatic cholesterol contents accompanied with alterations of cholesterol metabolic genes and hypermethylation in offspring rats at weaning.

Keywords

Maternal Betaine DNA methylation Cholesterol 

Notes

Acknowledgements

The present study was supported by the National Key Research and Development Program of China (2016YFD0500502), the National Basic Research Program of China (2012CB124703), the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control.

Author contributions

N.Z. contributed to hormone and gene assays, data analysis, and drafting of the manuscript. S.Y. was responsible for animal care, breeding, and sampling. Y.F. and B.S. provided technical support. R.Z. contributed to conception, experimental design, data interpretation, and critical revision of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The authors declare that handling of animals and all experimental procedures were according to “Guidelines on Ethical Treatment of Experimental Animals” (2006) No. 398 set by the Ministry of Science and Technology, China and approved by the Animal Ethics Committee of Nanjing Agricultural University.

Supplementary material

12020_2019_1906_MOESM1_ESM.docx (19 kb)
Supplementary Information

References

  1. 1.
    E. Ikonen, Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9(2), 125–138 (2008).  https://doi.org/10.1038/nrm2336 CrossRefPubMedGoogle Scholar
  2. 2.
    J.F. de Boer, V.W. Bloks, E. Verkade, M.R. Heiner-Fokkema, F. Kuipers, New insights in the multiple roles of bile acids and their signaling pathways in metabolic control. Curr. Opin. Lipidol. 29(3), 194–202 (2018).  https://doi.org/10.1097/MOL.0000000000000508 CrossRefPubMedGoogle Scholar
  3. 3.
    E.H. van den Berg, E.G. Gruppen, S. Ebtehaj, S.J.L. Bakker, U.J.F. Tietge, R.P.F. Dullaart, Cholesterol efflux capacity is impaired in subjects with an elevated Fatty Liver Index, a proxy of non-alcoholic fatty liver disease. Atherosclerosis 277, 21–27 (2018).  https://doi.org/10.1016/j.atherosclerosis.2018.07.028 CrossRefPubMedGoogle Scholar
  4. 4.
    S.M. Grundy, Obesity, metabolic syndrome, and cardiovascular disease. J. Clin. Endocrinol. Metab. 89(6), 2595–2600 (2004).  https://doi.org/10.1210/jc.2004-0372 CrossRefPubMedGoogle Scholar
  5. 5.
    S. Guo, L. Li, H. Yin, Cholesterol homeostasis and liver X receptor (LXR) in atherosclerosis. Cardiovasc. Hematol. Disord. Drug. Targets 18(1), 27–33 (2018).  https://doi.org/10.2174/1871529X18666180302113713 CrossRefPubMedGoogle Scholar
  6. 6.
    T.C. Sosa-Larios, A.A. Miliar-Garcia, L.A. Reyes-Castro, S. Morimoto, M.E. Jaramillo-Flores, Alterations in lipid metabolism due to a protein-restricted diet in rats during gestation and/or lactation. Food Funct. (2017).  https://doi.org/10.1039/c7fo01513e
  7. 7.
    G.C. Burdge, J. Slater-Jefferies, C. Torrens, E.S. Phillips, M.A. Hanson, K.A. Lillycrop, Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br. J. Nutr. 97(3), 435–439 (2007).  https://doi.org/10.1017/S0007114507352392 CrossRefPubMedGoogle Scholar
  8. 8.
    D.L. Almeida, F.S. Simoes, L.P.J. Saavedra, A.M. Praxedes Moraes, C.C.I. Matiusso, A. Malta, K. Palma-Rigo, P.C.F. Mathias, Maternal low-protein diet during lactation combined with early overfeeding impair male offspring’s long-term glucose homeostasis. Endocrine (2018).  https://doi.org/10.1007/s12020-018-1719-9
  9. 9.
    A.M. Vieira, P.G. de Almeida Brasiel, M.S. Ferreira, K. Mateus, M.S. Figueiredo, P.C. Lisboa, E.G. de Moura, J.O. do Amaral Correa, F.C.F. Lopes, P.H.F. da Silva, C.M. Sabarense, S. Dutra, A.S. de Aguiar, Maternal soybean diet during lactation alters breast milk composition and programs the lipid profile in adult male rat offspring. Endocrine 60(2), 272–281 (2018).  https://doi.org/10.1007/s12020-018-1572-x CrossRefPubMedGoogle Scholar
  10. 10.
    S. Rodrigo, E. Fauste, M. de la Cuesta, L. Rodriguez, J.J. Alvarez-Millan, M.I. Panadero, P. Otero, C. Bocos, Maternal fructose induces gender-dependent changes in both LXRalpha promoter methylation and cholesterol metabolism in progeny. J. Nutr. Biochem. 61, 163–172 (2018).  https://doi.org/10.1016/j.jnutbio.2018.08.011 CrossRefPubMedGoogle Scholar
  11. 11.
    K. Xie, Z. Fu, H. Li, X. Gu, Z. Cai, P. Xu, X. Cui, L. You, X. Wang, L. Zhu, C. Ji, X. Guo, High folate intake contributes to the risk of large for gestational age birth and obesity in male offspring. J. Cell. Physiol. 233(12), 9383–9389 (2018).  https://doi.org/10.1002/jcp.26520 CrossRefPubMedGoogle Scholar
  12. 12.
    J.M. Cholewa, L. Guimaraes-Ferreira, N.E. Zanchi, Effects of betaine on performance and body composition: a review of recent findings and potential mechanisms. Amino Acids 46(8), 1785–1793 (2014).  https://doi.org/10.1007/s00726-014-1748-5 CrossRefPubMedGoogle Scholar
  13. 13.
    M. Lever, S. Slow, The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 43(9), 732–744 (2010).  https://doi.org/10.1016/j.clinbiochem.2010.03.009 CrossRefPubMedGoogle Scholar
  14. 14.
    D.H. Kim, B. Lee, M.J. Kim, M.H. Park, H.J. An, E.K. Lee, K.W. Chung, J.W. Park, B.P. Yu, J.S. Choi, H.Y. Chung, Molecular mechanism of betaine on hepatic lipid metabolism: inhibition of forkhead box O1 (FoxO1) binding to peroxisome proliferator-activated receptor gamma (PPARgamma). J. Agric. Food Chem. 64(36), 6819–6825 (2016).  https://doi.org/10.1021/acs.jafc.6b02644 CrossRefPubMedGoogle Scholar
  15. 15.
    X. Dou, Y. Xia, J. Chen, Y. Qian, S. Li, X. Zhang, Z. Song, Rectification of impaired adipose tissue methylation status and lipolytic response contributes to hepatoprotective effect of betaine in a mouse model of alcoholic liver disease. Br. J. Pharmacol. 171(17), 4073–4086 (2014).  https://doi.org/10.1111/bph.12765 CrossRefPubMedGoogle Scholar
  16. 16.
    S. Lv, R. Fan, Y. Du, M. Hou, Z. Tang, W. Ling, H. Zhu, Betaine supplementation attenuates atherosclerotic lesion in apolipoprotein E-deficient mice. Eur. J. Nutr. 48(4), 205–212 (2009).  https://doi.org/10.1007/s00394-009-0003-4 CrossRefPubMedGoogle Scholar
  17. 17.
    D. Cai, Y. Jia, J. Lu, M. Yuan, S. Sui, H. Song, R. Zhao, Maternal dietary betaine supplementation modifies hepatic expression of cholesterol metabolic genes via epigenetic mechanisms in newborn piglets. Br. J. Nutr. 112(9), 1459–1468 (2014).  https://doi.org/10.1017/S0007114514002402 CrossRefPubMedGoogle Scholar
  18. 18.
    Y. Hu, Q. Sun, X. Li, M. Wang, D. Cai, X. Li, R. Zhao, In Ovo injection of betaine affects hepatic cholesterol metabolism through epigenetic gene regulation in newly hatched chicks. PLoS ONE 10(4), e0122643 (2015).  https://doi.org/10.1371/journal.pone.0122643 CrossRefPubMedGoogle Scholar
  19. 19.
    K.A. Lillycrop, G.C. Burdge, Epigenetic mechanisms linking early nutrition to long term health. Best Pract. Res. Clin. Endocrinol. Metab. 26(5), 667–676 (2012).  https://doi.org/10.1016/j.beem.2012.03.009 CrossRefPubMedGoogle Scholar
  20. 20.
    K.A. Lillycrop, G.C. Burdge, Maternal diet as a modifier of offspring epigenetics. J. Dev. Orig. Health Dis. 6(2), 88–95 (2015).  https://doi.org/10.1017/S2040174415000124 CrossRefPubMedGoogle Scholar
  21. 21.
    C. Luo, P. Hajkova, J.R. Ecker, Dynamic DNA methylation: In the right place at the right time. Science 361(6409), 1336–1340 (2018).  https://doi.org/10.1126/science.aat6806 CrossRefPubMedGoogle Scholar
  22. 22.
    Z. Yan, F. Jiao, X. Yan, H. Ou, Maternal chronic folate supplementation ameliorates behavior disorders induced by prenatal high-fat diet through methylation alteration of BDNF and Grin2b in offspring hippocampus. Mol. Nutr. Food Res. 61(12) (2017).  https://doi.org/10.1002/mnfr.201700461
  23. 23.
    M. McGee, S. Bainbridge, B. Fontaine-Bisson, A crucial role for maternal dietary methyl donor intake in epigenetic programming and fetal growth outcomes. Nutr. Rev. 76(6), 469–478 (2018).  https://doi.org/10.1093/nutrit/nuy006 CrossRefPubMedGoogle Scholar
  24. 24.
    S.E. McKee, S. Zhang, L. Chen, J.D. Rabinowitz, T.M. Reyes, Perinatal high fat diet and early life methyl donor supplementation alter one carbon metabolism and DNA methylation in the brain. J. Neurochem. 145(5), 362–373 (2018).  https://doi.org/10.1111/jnc.14319 CrossRefPubMedGoogle Scholar
  25. 25.
    D. Cai, M. Yuan, H. Liu, S. Pan, W. Ma, J. Hong, R. Zhao, Maternal betaine supplementation throughout gestation and lactation modifies hepatic cholesterol metabolic genes in weaning piglets via AMPK/LXR-mediated pathway and histone modification. Nutrients 8(10) (2016).  https://doi.org/10.3390/nu8100646
  26. 26.
    T. Bottiglieri, Isocratic high performance liquid chromatographic analysis of S-adenosylmethionine and S-adenosylhomocysteine in animal tissues: the effect of exposure to nitrous oxide. Biomed. Chromatogr. 4(6), 239–241 (1990).  https://doi.org/10.1002/bmc.1130040606 CrossRefPubMedGoogle Scholar
  27. 27.
    D.H. Kim, S.M. Kim, B. Lee, E.K. Lee, K.W. Chung, K.M. Moon, H.J. An, K.M. Kim, B.P. Yu, H.Y. Chung, Effect of betaine on hepatic insulin resistance through FOXO1-induced NLRP3 inflammasome. J. Nutr. Biochem. 45, 104–114 (2017).  https://doi.org/10.1016/j.jnutbio.2017.04.014 CrossRefPubMedGoogle Scholar
  28. 28.
    Y. Jia, M. Ling, L. Zhang, S. Jiang, Y. Sha, R. Zhao, Downregulation of miR-150 expression by DNA hypermethylation is associated with high 2-hydroxy-(4-methylthio)butanoic acid-induced hepatic cholesterol accumulation in nursery piglets. J. Agric. Food Chem. 64(40), 7530–7539 (2016).  https://doi.org/10.1021/acs.jafc.6b03615 CrossRefPubMedGoogle Scholar
  29. 29.
    S. He, S. Zhao, S. Dai, D. Liu, S.G. Bokhari, Effects of dietary betaine on growth performance, fat deposition and serum lipids in broilers subjected to chronic heat stress. Anim. Sci. J. = Nihon Chikusan Gakkaiho 86(10), 897–903 (2015).  https://doi.org/10.1111/asj.12372 PubMedGoogle Scholar
  30. 30.
    D.O. McGregor, W.J. Dellow, R.A. Robson, M. Lever, P.M. George, S.T. Chambers, Betaine supplementation decreases post-methionine hyperhomocysteinemia in chronic renal failure. Kidney Int. 61(3), 1040–1046 (2002).  https://doi.org/10.1046/j.1523-1755.2002.00199.x CrossRefPubMedGoogle Scholar
  31. 31.
    U. Schwab, A. Torronen, L. Toppinen, G. Alfthan, M. Saarinen, A. Aro, M. Uusitupa, Betaine supplementation decreases plasma homocysteine concentrations but does not affect body weight, body composition, or resting energy expenditure in human subjects. Am. J. Clin. Nutr. 76(5), 961–967 (2002).  https://doi.org/10.1093/ajcn/76.5.961 CrossRefPubMedGoogle Scholar
  32. 32.
    C.L. Hofacre, J.R. Glisson, S.H. Kleven, J. Brown, G.N. Rowland, Evaluation of Pasteurella multocida mutants of low virulence. I. Development and pathogenicity. Avian Dis. 33(2), 270–274 (1989)CrossRefPubMedGoogle Scholar
  33. 33.
    U. Ravnskov, D.M. Diamond, R. Hama, T. Hamazaki, B. Hammarskjold, N. Hynes, M. Kendrick, P.H. Langsjoen, A. Malhotra, L. Mascitelli, K.S. McCully, Y. Ogushi, H. Okuyama, P.J. Rosch, T. Schersten, S. Sultan, R. Sundberg, Lack of an association or an inverse association between low-density-lipoprotein cholesterol and mortality in the elderly: a systematic review. BMJ Open 6(6), e010401 (2016).  https://doi.org/10.1136/bmjopen-2015-010401 CrossRefPubMedGoogle Scholar
  34. 34.
    G. Sohi, K. Marchand, A. Revesz, E. Arany, D.B. Hardy, Maternal protein restriction elevates cholesterol in adult rat offspring due to repressive changes in histone modifications at the cholesterol 7alpha-hydroxylase promoter. Mol. Endocrinol. 25(5), 785–798 (2011).  https://doi.org/10.1210/me.2010-0395 CrossRefPubMedGoogle Scholar
  35. 35.
    X. Liu, Y. Qi, B. Tian, D. Chen, H. Gao, C. Xi, Y. Xing, Z. Yuan, Maternal protein restriction induces alterations in hepatic tumor necrosis factor-alpha/CYP7A1 signaling and disorders regulation of cholesterol metabolism in the adult rat offspring. J. Clin. Biochem. Nutr. 55(1), 40–47 (2014).  https://doi.org/10.3164/jcbn.13-100 CrossRefPubMedGoogle Scholar
  36. 36.
    E.K. Zinkhan, B. Yu, A. Schlegel, Prenatal exposure to a maternal high fat diet increases hepatic cholesterol accumulation in intrauterine growth restricted rats in part through microRNA-122 inhibition of Cyp7a1. Front. Physiol. 9, 645 (2018).  https://doi.org/10.3389/fphys.2018.00645 CrossRefPubMedGoogle Scholar
  37. 37.
    S.C. Kalhan, One carbon metabolism in pregnancy: impact on maternal, fetal and neonatal health. Mol. Cell. Endocrinol. 435, 48–60 (2016).  https://doi.org/10.1016/j.mce.2016.06.006 CrossRefPubMedGoogle Scholar
  38. 38.
    T. Nishimura, R. Yagi, M. Usuda, K. Oda, M. Yamazaki, S. Suda, Y. Takahashi, F. Okazaki, Y. Sai, K. Higuchi, T. Maruyama, M. Tomi, E. Nakashima, System A amino acid transporter SNAT2 shows subtype-specific affinity for betaine and hyperosmotic inducibility in placental trophoblasts. Biochim. Biophys. Acta 1838(5), 1306–1312 (2014).  https://doi.org/10.1016/j.bbamem.2014.01.004 CrossRefPubMedGoogle Scholar
  39. 39.
    L.M. Fischer, K.A. da Costa, J. Galanko, W. Sha, B. Stephenson, J. Vick, S.H. Zeisel, Choline intake and genetic polymorphisms influence choline metabolite concentrations in human breast milk and plasma. Am. J. Clin. Nutr. 92(2), 336–346 (2010).  https://doi.org/10.3945/ajcn.2010.29459 CrossRefPubMedGoogle Scholar
  40. 40.
    D. Cai, Y. Jia, H. Song, S. Sui, J. Lu, Z. Jiang, R. Zhao, Betaine supplementation in maternal diet modulates the epigenetic regulation of hepatic gluconeogenic genes in neonatal piglets. PLoS ONE 9(8), e105504 (2014).  https://doi.org/10.1371/journal.pone.0105504 CrossRefPubMedGoogle Scholar
  41. 41.
    Y.M. Jia, H.G. Song, G.C. Gao, D.M. Cai, X.J. Yang, R.Q. Zhao, Maternal betaine supplementation during gestation enhances expression of mtDNA-encoded genes through D-loop DNA hypomethylation in the skeletal muscle of newborn piglets. J. Agric. Food Chem. 63(46), 10152–10160 (2015).  https://doi.org/10.1021/acs.jafc.5b04418 CrossRefPubMedGoogle Scholar
  42. 42.
    R.A. Waterland, D.C. Dolinoy, J.R. Lin, C.A. Smith, X. Shi, K.G. Tahiliani, Maternal methyl supplements increase offspring DNA methylation at axin fused. Genesis 44(9), 401–406 (2006).  https://doi.org/10.1002/dvg.20230 CrossRefPubMedGoogle Scholar
  43. 43.
    A. Ly, L. Ishiguro, D. Kim, D. Im, S.E. Kim, K.J. Sohn, R. Croxford, Y.I. Kim, Maternal folic acid supplementation modulates DNA methylation and gene expression in the rat offspring in a gestation period-dependent and organ-specific manner. J. Nutr. Biochem. 33, 103–110 (2016).  https://doi.org/10.1016/j.jnutbio.2016.03.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Nannan Zhao
    • 1
    • 2
  • Shu Yang
    • 1
    • 2
  • Yue Feng
    • 1
    • 2
  • Bo Sun
    • 1
    • 2
  • Ruqian Zhao
    • 1
    • 2
    Email author
  1. 1.MOE Joint International Research Laboratory of Animal Health & Food SafetyNanjing Agricultural UniversityNanjingP. R. China
  2. 2.Key Laboratory of Animal Physiology & BiochemistryNanjing Agricultural UniversityNanjingP. R. China

Personalised recommendations