Advertisement

Endocrine

pp 1–12 | Cite as

Outcome and molecular characteristics of non-invasive encapsulated follicular variant of papillary thyroid carcinoma with oncocytic features

  • Bin Xu
  • Ed Reznik
  • R. Michael Tuttle
  • Jeffrey Knauf
  • James A. Fagin
  • Nora Katabi
  • Snjezana Dogan
  • Nathaniel Aleynick
  • Venkatraman Seshan
  • Sumit Middha
  • Danny Enepekides
  • Gian Piero Casadei
  • Erica Solaroli
  • Giovanni Tallini
  • Ronald GhosseinEmail author
  • Ian GanlyEmail author
Original Article
  • 53 Downloads

Abstract

Purpose

In 2016, non-invasive encapsulated follicular variant of papillary thyroid carcinoma (NI-EFVPTC) was renamed as noninvasive thyroid follicular neoplasm with papillary-like nuclear features (NIFTP). However, as the study cohort did not mention tumors with oncocytic features, such lesions are still labeled by some as FVPTC. It is therefore crucial to evaluate the outcome and molecular profile of oncocytic NI-EFVPTC.

Methods

A multi-institutional clinico-pathologic review was conducted to select 61 patients having oncocytic NI-EFVPTC. A detailed molecular profile was carried out in 15 patients.

Results

Oncocytic NI-EFVPTCs predominantly affected women in their 50s. There was no distant metastasis, lymph node metastases, or structural recurrence in the entire cohort. Among patients with ≥5 years of FU, all 33 individuals did not recur with a median FU of 10.2 years. Oncocytic NI-EFVPTC commonly had RAS (33%) mutations, a high frequency of mitochondrial DNA mutations (67%) and multiple chromosomal gains/losses (53%). No fusion genes were detected.

Conclusions

Oncocytic NI-EFVPTC, when stringently selected for, lacks metastasis at presentation and follows an extremely indolent clinical course, even when treated conservatively with lobectomy alone without RAI therapy. These tumors share a similar mutational profile as NIFTP, FVPTC, and follicular neoplasm and are predominantly RAS-related. Like Hurthle cell neoplasms, they harbor a high frequency of mitochondrial DNA mutations, which contribute to the oncocytic cytomorphology. However, they lack the widespread chromosomal alterations observed in Hurthle cell carcinoma. Consideration should be given to include oncocytic NI-EFVPTCs as NIFTP in order to avoid overtreatment of these highly indolent tumors.

Keywords

Encapsulated follicular variant Papillary thyroid carcinoma Noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP) RAS Oncocytic 

Notes

Funding

Research reported in this publication was supported in part by the Cancer Center Support Grant of the National Institutes of Health/National Cancer Institute under award number P30CA008748. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Research reported in this publication was also supported in part by an Italian Government-Ministero della Salute Grant No. RF-2011-02350857 (to G.T.)

Compliance with ethical standards

Conflict of interest

All authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Supplementary material

12020_2019_1848_MOESM1_ESM.pptx (2.1 mb)
Supplementary Materials

References

  1. 1.
    H. Lim, S.S. Devesa, J.A. Sosa, D. Check, C.M. Kitahara, Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317(13), 1338–1348 (2017).  https://doi.org/10.1001/jama.2017.2719 CrossRefGoogle Scholar
  2. 2.
    R.L. Siegel, K.D. Miller, A. Jemal, Cancer statistics, 2018. CA Cancer J. Clin. 68(1), 7–30 (2018).  https://doi.org/10.3322/caac.21442 CrossRefGoogle Scholar
  3. 3.
    C.K. Jung, M.P. Little, J.H. Lubin, A.V. Brenner, S.A. Wells Jr., A.J. Sigurdson, Y.E. Nikiforov, The increase in thyroid cancer incidence during the last four decades is accompanied by a high frequency of BRAF mutations and a sharp increase in RAS mutations. J. Clin. Endocrinol. Metab. 99(2), E276–E285 (2014).  https://doi.org/10.1210/jc.2013-2503 CrossRefGoogle Scholar
  4. 4.
    R.V. Lloyd, R.Y. Osamura, G. Kloppel, J. Rosai. WHO classification of tumours of endocrine organs. (International Agency for Research on Cancer (IARC), Lyon), 2017)Google Scholar
  5. 5.
    Y.E. Nikiforov, R.R. Seethala, G. Tallini, Z.W. Baloch, F. Basolo, L.D. Thompson, J.A. Barletta, B.M. Wenig, A. Al Ghuzlan, K. Kakudo, T.J. Giordano, V.A. Alves, E. Khanafshar, S.L. Asa, A.K. El-Naggar, W.E. Gooding, S.P. Hodak, R.V. Lloyd, G. Maytal, O. Mete, M.N. Nikiforova, V. Nose, M. Papotti, D.N. Poller, P.M. Sadow, A.S. Tischler, R.M. Tuttle, K.B. Wall, V.A. LiVolsi, G.W. Randolph, R.A. Ghossein, Nomenclature revision for encapsulated follicular variant of papillary thyroid carcinoma: a paradigm shift to reduce overtreatment of indolent tumors. JAMA Oncol. 2(8), 1023–1029 (2016).  https://doi.org/10.1001/jamaoncol.2016.0386 CrossRefGoogle Scholar
  6. 6.
    Cancer Genome Atlas Research, N., Integrated genomic characterization of papillary thyroid carcinoma. Cell 159(3), 676–690 (2014).  https://doi.org/10.1016/j.cell.2014.09.050 CrossRefGoogle Scholar
  7. 7.
    D.N. Johnson, L.V. Furtado, B.C. Long, C.J. Zhen, M. Wurst, I. Mujacic, S. Kadri, J.P. Segal, T. Antic, N.A. Cipriani, Noninvasive follicular thyroid neoplasms with papillary-like nuclear features are genetically and biologically similar to adenomatous nodules and distinct from papillary thyroid carcinomas with extensive follicular growth. Arch. Pathol. Lab. Med. 142(7), 838–850 (2018).  https://doi.org/10.5858/arpa.2017-0118-OA CrossRefGoogle Scholar
  8. 8.
    J. Liu, B. Singh, G. Tallini, D.L. Carlson, N. Katabi, A. Shaha, R.M. Tuttle, R.A. Ghossein, Follicular variant of papillary thyroid carcinoma: a clinicopathologic study of a problematic entity. Cancer 107(6), 1255–1264 (2006).  https://doi.org/10.1002/cncr.22138 CrossRefGoogle Scholar
  9. 9.
    R.V. Lloyd, S.L. Asa, V.A. LiVolsi, P.M. Sadow, A.S. Tischler, R.A. Ghossein, R.M. Tuttle, Y.E. Nikiforov, The evolving diagnosis of noninvasive follicular thyroid neoplasm with papillary-like nuclear features (NIFTP). Hum. Pathol. 74, 1–4 (2018).  https://doi.org/10.1016/j.humpath.2017.12.027 CrossRefGoogle Scholar
  10. 10.
    S.J. Johnson, T.J. Stephenson, D.N. Poller, NIFTP addendum to the RCPath Dataset for thyroid cancer histopathology reports. http://www.ukeps.com/docs/niftp.pdf (2016).
  11. 11.
    I. Ganly, J. Ricarte Filho, S. Eng, R. Ghossein, L.G. Morris, Y. Liang, N. Socci, K. Kannan, Q. Mo, J.A. Fagin, T.A. Chan, Genomic dissection of Hurthle cell carcinoma reveals a unique class of thyroid malignancy. J. Clin. Endocrinol. Metab. 98(5), E962–E972 (2013).  https://doi.org/10.1210/jc.2012-3539 CrossRefGoogle Scholar
  12. 12.
    J. Rosai, R.A. DeLellis, M.L. Carcangiu, W.J. Frable, T. Giovanni. Tumor of the thyroid and parathyroid gland (AFIP atlas of tumor pathology series 4). (American Registry of Pathology Press, Silver Spring, MD), 2015)Google Scholar
  13. 13.
    D.T. Cheng, T.N. Mitchell, A. Zehir, R.H. Shah, R. Benayed, A. Syed, R. Chandramohan, Z.Y. Liu, H.H. Won, S.N. Scott, A.R. Brannon, C. O’Reilly, J. Sadowska, J. Casanova, A. Yannes, J.F. Hechtman, J. Yao, W. Song, D.S. Ross, A. Oultache, S. Dogan, L. Borsu, M. Hameed, K. Nafa, M.E. Arcila, M. Ladanyi, M.F. Berger, Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT): a hybridization capture-based next-generation sequencing clinical assay for solid tumor molecular oncology. J. Mol. Diagn. 17(3), 251–264 (2015).  https://doi.org/10.1016/j.jmoldx.2014.12.006 CrossRefGoogle Scholar
  14. 14.
    L.G. Morris, R. Chandramohan, L. West, A. Zehir, D. Chakravarty, D.G. Pfister, R.J. Wong, N.Y. Lee, E.J. Sherman, S.S. Baxi, I. Ganly, B. Singh, J.P. Shah, A.R. Shaha, J.O. Boyle, S.G. Patel, B.R. Roman, C.A. Barker, S.M. McBride, T.A. Chan, S. Dogan, D.M. Hyman, M.F. Berger, D.B. Solit, N. Riaz, A.L. Ho. The molecular landscape of recurrent and metastatic head and neck cancers: insights from a precision oncology sequencing platform. JAMA Oncol. 3(2), 244–255 (2017).  https://doi.org/10.1001/jamaoncol.2016.1790
  15. 15.
    J.T. Robinson, H. Thorvaldsdottir, W. Winckler, M. Guttman, E.S. Lander, G. Getz, J.P. Mesirov, Integrative genomics viewer. Nat. Biotechnol. 29(1), 24–26 (2011).  https://doi.org/10.1038/nbt.1754 CrossRefGoogle Scholar
  16. 16.
    R. Shen, V.E. Seshan, FACETS: allele-specific copy number and clonal heterogeneity analysis tool for high-throughput DNA sequencing. Nucleic Acids Res. 44(16), e131 (2016).  https://doi.org/10.1093/nar/gkw520 CrossRefGoogle Scholar
  17. 17.
    I. Ganly, V. Makarov, S. Deraje, Y. Dong, E. Reznik, V. Seshan, G. Nanjangud, S. Eng, P. Bose, F. Kuo, L.G.T. Morris, I. Landa, P.B. Carrillo Albornoz, N. Riaz, Y.E. Nikiforov, K. Patel, C. Umbricht, M. Zeiger, E. Kebebew, E. Sherman, R. Ghossein, J.A. Fagin, T.A. Chan, Integrated genomic analysis of hurthle cell cancer reveals oncogenic drivers, recurrent mitochondrial mutations, and unique chromosomal landscapes. Cancer Cell. 34(2), 256–270.e255 (2018).  https://doi.org/10.1016/j.ccell.2018.07.002 CrossRefGoogle Scholar
  18. 18.
    H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16), 2078–2079 (2009).  https://doi.org/10.1093/bioinformatics/btp352 CrossRefGoogle Scholar
  19. 19.
    E. Reznik, Q. Wang, K. La, N. Schultz, C. Sander, Mitochondrial respiratory gene expression is suppressed in many cancers. eLife 6, PMID: 28099114 (2017).  https://doi.org/10.7554/eLife.21592
  20. 20.
    B.R. Haugen, A.M. Sawka, E.K. Alexander, K.C. Bible, P. Caturegli, G.M. Doherty, S.J. Mandel, J.C. Morris, A. Nassar, F. Pacini, M. Schlumberger, K. Schuff, S.I. Sherman, H. Somerset, J.A. Sosa, D.L. Steward, L. Wartofsky, M.D. Williams, American Thyroid Association Guidelines on the Management of Thyroid Nodules and Differentiated Thyroid Cancer Task Force Review and Recommendation on the Proposed Renaming of Encapsulated Follicular Variant Papillary Thyroid Carcinoma Without Invasion to Noninvasive Follicular Thyroid Neoplasm with Papillary-Like Nuclear Features. Thyroid. 27(4), 481–483 (2017).  https://doi.org/10.1089/thy.2016.0628 CrossRefGoogle Scholar
  21. 21.
    B.R.M. Haugen, E.K. Alexander, K.C. Bible, G. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G. Randolph, A. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D. Steward, R.M.M. Tuttle, L. Wartofsky, 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 26, 1–133 (2016).  https://doi.org/10.1089/thy.2015.0020 CrossRefGoogle Scholar
  22. 22.
    E.L. Mazzaferri, S.M. Jhiang, Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer. Am. J. Med. 97(5), 418–428 (1994)CrossRefGoogle Scholar
  23. 23.
    J.F. Nwatsock, D. Taieb, F.D. Zok, O. Mundler, Late recurrences of thyroid carcinoma 24 years after a complete remission: when monitoring should be stopped? World J. Nucl. Med. 11(1), 42–43 (2012).  https://doi.org/10.4103/1450-1147.98749 CrossRefGoogle Scholar
  24. 24.
    L.D. Thompson, Ninety-four cases of encapsulated follicular variant of papillary thyroid carcinoma: a name change to noninvasive follicular thyroid neoplasm with papillary-like nuclear features would help prevent overtreatment. Mod. Pathol. 29(7), 698–707 (2016).  https://doi.org/10.1038/modpathol.2016.65 CrossRefGoogle Scholar
  25. 25.
    M. Rivera, J. Ricarte-Filho, J. Knauf, A. Shaha, M. Tuttle, J.A. Fagin, R.A. Ghossein, Molecular genotyping of papillary thyroid carcinoma follicular variant according to its histological subtypes (encapsulated vs infiltrative) reveals distinct BRAF and RAS mutation patterns. Mod. Pathol. 23(9), 1191–1200 (2010).  https://doi.org/10.1038/modpathol.2010.112 CrossRefGoogle Scholar
  26. 26.
    M. Rivera, R.M. Tuttle, S. Patel, A. Shaha, J.P. Shah, R.A. Ghossein, Encapsulated papillary thyroid carcinoma: a clinico-pathologic study of 106 cases with emphasis on its morphologic subtypes (histologic growth pattern). Thyroid 19(2), 119–127 (2009).  https://doi.org/10.1089/thy.2008.0303 CrossRefGoogle Scholar
  27. 27.
    E. Cerami, J. Gao, U. Dogrusoz, B.E. Gross, S.O. Sumer, B.A. Aksoy, A. Jacobsen, C.J. Byrne, M.L. Heuer, E. Larsson, Y. Antipin, B. Reva, A.P. Goldberg, C. Sander, N. Schultz, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2(5), 401–404 (2012).  https://doi.org/10.1158/2159-8290.cd-12-0095 CrossRefGoogle Scholar
  28. 28.
    G. Tallini, A. Hsueh, S. Liu, G. Garcia-Rostan, M.R. Speicher, D.C. Ward, Frequent chromosomal DNA unbalance in thyroid oncocytic (Hurthle cell) neoplasms detected by comparative genomic hybridization. Lab. Invest. 79(5), 547–555 (1999)Google Scholar
  29. 29.
    J. Gao, B.A. Aksoy, U. Dogrusoz, G. Dresdner, B. Gross, S.O. Sumer, Y. Sun, A. Jacobsen, R. Sinha, E. Larsson, E. Cerami, C. Sander, N. Schultz, Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal. 6(269), pl1 (2013).  https://doi.org/10.1126/scisignal.2004088 CrossRefGoogle Scholar
  30. 30.
    G. Gasparre, E. Bonora, G. Tallini, G. Romeo, Molecular features of thyroid oncocytic tumors. Mol. Cell. Endocrinol. 321(1), 67–76 (2010).  https://doi.org/10.1016/j.mce.2010.02.022 CrossRefGoogle Scholar
  31. 31.
    E. Bonora, A.M. Porcelli, G. Gasparre, A. Biondi, A. Ghelli, V. Carelli, A. Baracca, G. Tallini, A. Martinuzzi, G. Lenaz, M. Rugolo, G. Romeo, Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res. 66(12), 6087–6096 (2006).  https://doi.org/10.1158/0008-5472.can-06-0171 CrossRefGoogle Scholar
  32. 32.
    G. Gasparre, A.M. Porcelli, E. Bonora, L.F. Pennisi, M. Toller, L. Iommarini, A. Ghelli, M. Moretti, C.M. Betts, G.N. Martinelli, A.R. Ceroni, F. Curcio, V. Carelli, M. Rugolo, G. Tallini, G. Romeo, Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc. Natl Acad. Sci. USA 104(21), 9001–9006 (2007).  https://doi.org/10.1073/pnas.0703056104 CrossRefGoogle Scholar
  33. 33.
    V. Maximo, T. Botelho, J. Capela, P. Soares, J. Lima, A. Taveira, T. Amaro, A.P. Barbosa, A. Preto, H.R. Harach, D. Williams, M. Sobrinho-Simoes, Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hurthle cell) tumours of the thyroid. Br. J. Cancer 92(10), 1892–1898 (2005).  https://doi.org/10.1038/sj.bjc.6602547 CrossRefGoogle Scholar
  34. 34.
    N. Wada, Q.Y. Duh, D. Miura, L. Brunaud, M.G. Wong, O.H. Clark, Chromosomal aberrations by comparative genomic hybridization in hurthle cell thyroid carcinomas are associated with tumor recurrence. J. Clin. Endocrinol. Metab. 87(10), 4595–4601 (2002).  https://doi.org/10.1210/jc.2002-020339 CrossRefGoogle Scholar
  35. 35.
    I. Ganly, L. Wang, R.M. Tuttle, N. Katabi, G.A. Ceballos, H.R. Harach, R. Ghossein, Invasion rather than nuclear features correlates with outcome in encapsulated follicular tumors: further evidence for the reclassification of the encapsulated papillary thyroid carcinoma follicular variant. Hum. Pathol. 46(5), 657–664 (2015).  https://doi.org/10.1016/j.humpath.2015.01.010 CrossRefGoogle Scholar
  36. 36.
    B. Xu, G. Tallini, T. Scognamiglio, B.R. Roman, R.M. Tuttle, R.A. Ghossein, Outcome of large noninvasive follicular thyroid neoplasm with papillary-like nuclear features. Thyroid. 27(4), 512–517 (2017).  https://doi.org/10.1089/thy.2016.0649 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bin Xu
    • 1
  • Ed Reznik
    • 2
  • R. Michael Tuttle
    • 3
  • Jeffrey Knauf
    • 3
  • James A. Fagin
    • 3
  • Nora Katabi
    • 4
  • Snjezana Dogan
    • 4
  • Nathaniel Aleynick
    • 4
  • Venkatraman Seshan
    • 2
  • Sumit Middha
    • 4
  • Danny Enepekides
    • 5
  • Gian Piero Casadei
    • 6
  • Erica Solaroli
    • 7
  • Giovanni Tallini
    • 8
  • Ronald Ghossein
    • 4
    Email author
  • Ian Ganly
    • 9
    Email author
  1. 1.Department of Laboratory Medicine and Molecular DiagnosticsSunnybrook Health Sciences CentreTorontoCanada
  2. 2.Department of Epidemiology and BiostatisticsMemorial Sloan Kettering Cancer centerNew YorkUSA
  3. 3.Department of MedicineMemorial Sloan Kettering Cancer centerNew YorkUSA
  4. 4.Department of PathologyMemorial Sloan Kettering Cancer centerNew YorkUSA
  5. 5.Department of OtolaryngologySunnybrook Health Sciences CentreTorontoCanada
  6. 6.Anatomic Pathology UnitOspedale MaggioreBolognaItaly
  7. 7.Endocrinology UnitOspedale MaggioreBolognaItaly
  8. 8.Department of Experimental, Diagnostic and Specialty Medicine-Anatomic PathologyUniversity of Bologna School of MedicineBolognaItaly
  9. 9.Department of SurgeryMemorial Sloan Kettering Cancer centerNew YorkUSA

Personalised recommendations