pp 1–9 | Cite as

Validation and comparison of three newly-released Thyroid Imaging Reporting and Data Systems for cancer risk determination

  • Ting Xu
  • Ya Wu
  • Run-Xin Wu
  • Yu-Zhi Zhang
  • Jing-Yu Gu
  • Xin-Hua Ye
  • Wei Tang
  • Shu-Hang Xu
  • Chao Liu
  • Xiao-Hong WuEmail author
Original Article



To validate and compare diagnostic value of three newly-released Thyroid Imaging Reporting and Data Systems (TIRADS) for cancer risk determination.


Total 2031 patients with 2465 thyroid nodules were recruited for this study. Ultrasound (US) images were categorized based on three TIRADS editions established by Korean Society of Thyroid Radiology (KSThR), European Thyroid Association (ETA) and American College of Radiology (ACR). ROC curves were established to compare diagnostic value.


Total 1460 benign and 1005 malignant nodules were enrolled. The malignancy rates of each category in KSThR-TIRADS were 2.8%, 5.1%, 33.7% and 79.6%, respectively. For European-TIRADS, 0, 3.1, 22.8, and 73.5% of nodules categorized as 2 to 5 were malignant. Distribution of carcinomas among ACR-TIRADS categories was 0%, 2.3%, 7.5%, 40.1% and 81.4%, respectively. In terms of diagnostic value, KSThR-TIRADS had highest AUC (0.855) and specificity (87.4%), while lowest (71.4%) sensitivity. ACR-TIRADS showed best sensitivity (96.6%) with lowest specificity (52.9%) and the AUC (0.846) was slightly lower than KSThR-TIRADS. Total 56.1, 45.4, and 37.4% fine-needle aspiration biopsy (FNAB) were recommended by KSThR, ETA and ACR, revealing 42.8%, 44.5% and 53.6% malignant lesions, respectively. The rate of unnecessary FNAB was lowest with the ACR (17.3%), followed by ETA (25.2%) and KSThR (32.1%).


All these US models showed great value in predicting thyroid malignancy. Among them, KSThR-TIRADS showed the most effective diagnostic performance in specificity, while ACR-TIRADS yielded best sensitivity. As for FNAB criteria, ACR-TIRADS showed the lowest rate of unnecessary FNAB and highest rate of malignancy in FNAB.


Thyroid nodule Malignancy Ultrasound Diagnostic value 



The authors thank all participating investigators for their time and efforts dedicated to this study.


This work was supported by grants to X Wu from the National Natural Science Foundation of China (81261120566), Jiangsu Province key medical personnel project (RC2011068).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study has been approved by ethics committee at all participating centers and all procedures were in accordance with the ethical standards of the ethical committees and of the 1964 Declaration of Helsinki and its later amendments.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    H.J. Moon, E.K. Kim, J.Y. Kwak, Malignancy risk stratification in thyroid nodules with benign results on cytology: combination of thyroid imaging reporting and data system and Bethesda system. Ann. Surg. Oncol. 21(6), 1898–1903 (2014)CrossRefGoogle Scholar
  2. 2.
    K. Wolinski, M. Szkudlarek, E. Szczepanek-Parulska, M. Ruchala, Usefulness of different ultrasound features of malignancy in predicting the type of thyroid lesions: a meta-analysis of prospective studies. Pol. Arch. Med. Wewn. 124(3), 97–104 (2014)PubMedGoogle Scholar
  3. 3.
    E. Horvath, S. Majlis, R. Rossi, C. Franco, J.P. Niedmann, A. Castro, M. Dominguez, An ultrasonogram reporting system for thyroid nodules stratifying cancer risk for clinical management. J. Clin. Endocrinol. Metab. 94(5), 1748–1751 (2009)CrossRefGoogle Scholar
  4. 4.
    S.Y. Xu, W.W. Zhan, W.H. Wang, Evaluation of thyroid nodules by a scoring and categorizing method based on sonographic features. J. Ultrasound Med. 34(12), 2179–2185 (2015)CrossRefGoogle Scholar
  5. 5.
    J.H. Shin, J.H. Baek, J. Chung, E.J. Ha, J.H. Kim, Y.H. Lee, H.K. Lim, W.J. Moon, D.G. Na, J.S. Park, Y.J. Choi, S.Y. Hahn, S.J. Jeon, S.L. Jung, D.W. Kim, E.K. Kim, J.Y. Kwak, C.Y. Lee, H.J. Lee, J.H. Lee, J.H. Lee, K.H. Lee, S.W. Park, J.Y. Sung, Ultrasonography diagnosis and imaging-based management of thyroid nodules: revised Korean Society of Thyroid Radiology Consensus Statement and Recommendations. Korean J. Radiol. 17(3), 370–395 (2016)CrossRefGoogle Scholar
  6. 6.
    F.N. Tessler, W.D. Middleton, E.G. Grant, J.K. Hoang, L.L. Berland, S.A. Teefey, J.J. Cronan, M.D. Beland, T.S. Desser, M.C. Frates, L.W. Hammers, U.M. Hamper, J.E. Langer, C.C. Reading, L.M. Scoutt, A.T. Stavros, ACR Thyroid Imaging, Reporting and Data System (TI-RADS): White Paper of the ACR TI-RADS Committee. J. Am. Coll. Radiol. 14(5), 587–595 (2017)CrossRefGoogle Scholar
  7. 7.
    G. Russ, S.J. Bonnema, M.F. Erdogan, C. Durante, R. Ngu, L. Leenhardt, European Thyroid Association Guidelines for Ultrasound Malignancy Risk Stratification of Thyroid Nodules in Adults: the EU-TIRADS. Eur. Thyroid J. 6(5), 225–237 (2017)CrossRefGoogle Scholar
  8. 8.
    D.S. Cooper, G.M. Doherty, B.R. Haugen, R.T. Kloos, S.L. Lee, S.J. Mandel, E.L. Mazzaferri, B. McIver, F. Pacini, M. Schlumberger, S.I. Sherman, D.L. Steward, R.M. Tuttle, Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer. Thyroid 19(11), 1167–1214 (2009)CrossRefGoogle Scholar
  9. 9.
    M.C. Frates, C.B. Benson, J.W. Charboneau, E.S. Cibas, O.H. Clark, B.G. Coleman, J.J. Cronan, P.M. Doubilet, D.B. Evans, J.R. Goellner, I.D. Hay, B.S. Hertzberg, C.M. Intenzo, R.B. Jeffrey, J.E. Langer, P.R. Larsen, S.J. Mandel, W.D. Middleton, C.C. Reading, S.I. Sherman, F.N. Tessler, Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement. Radiology 237(3), 794–800 (2005)CrossRefGoogle Scholar
  10. 10.
    J.Y. Park, H.J. Lee, H.W. Jang, H.K. Kim, J.H. Yi, W. Lee, S.H. Kim, A proposal for a thyroid imaging reporting and data system for ultrasound features of thyroid carcinoma. Thyroid 19(11), 1257–1264 (2009)CrossRefGoogle Scholar
  11. 11.
    J.Y. Kwak, K.H. Han, J.H. Yoon, H.J. Moon, E.J. Son, S.H. Park, H.K. Jung, J.S. Choi, B.M. Kim, E.K. Kim, Thyroid imaging reporting and data system for US features of nodules: a step in establishing better stratification of cancer risk. Radiology 260(3), 892–899 (2011)CrossRefGoogle Scholar
  12. 12.
    B.R. Haugen, E.K. Alexander, K.C. Bible, G.M. Doherty, S.J. Mandel, Y.E. Nikiforov, F. Pacini, G.W. Randolph, A.M. Sawka, M. Schlumberger, K.G. Schuff, S.I. Sherman, J.A. Sosa, D.L. Steward, R.M. Tuttle, L. Wartofsky, 2015 AmericanThyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid 26(1), 1–133 (2016)CrossRefGoogle Scholar
  13. 13.
  14. 14.
    T. Xu, J.Y. Gu, X.H. Ye, S.H. Xu, Y. Wu, X.Y. Shao, D.Z. Liu, W.P. Lu, F. Hua, B.M. Shi, J. Liang, L. Xu, W. Tang, C. Liu, X.H. Wu, Thyroid nodule sizes influence the diagnostic performance of TIRADS and ultrasound patterns of 2015 ATA guidelines: a multicenter retrospective study. Sci. Rep. 24(7), 43183 (2017)CrossRefGoogle Scholar
  15. 15.
    J.P. Brito, M.R. Gionfriddo, N.A. Al, K.R. Boehmer, A.L. Leppin, C. Reading, M. Callstrom, T.A. Elraiyah, L.J. Prokop, M.N. Stan, M.H. Murad, J.C. Morris, V.M. Montori, The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis. J. Clin. Endocrinol. Metab. 99(4), 1253–1263 (2014)CrossRefGoogle Scholar
  16. 16.
    H. Malhi, M.D. Beland, S.Y. Cen, E. Allgood, K. Daley, S.E. Martin, J.J. Cronan, E.G. Grant, Echogenic foci in thyroid nodules: significance of posterior acoustic artifacts. AJR Am. J. Roentgenol. 203(6), 1310–1316 (2014)CrossRefGoogle Scholar
  17. 17.
    J.H. Yoon, H.S. Lee, E.K. Kim, H.J. Moon, J.Y. Kwak, Malignancy Risk Stratification of Thyroid Nodules: Comparison between the Thyroid Imaging Reporting and Data System and the 2014 American Thyroid Association Management Guidelines. Radiology 278(3), 917–924 (2016)CrossRefGoogle Scholar
  18. 18.
    W.D. Middleton, S.A. Teefey, C.C. Reading, J.E. Langer, M.D. Beland, M.M. Szabunio, T.S. Desser, Multiinstitutional Analysis of Thyroid Nodule Risk Stratification Using the American College of Radiology Thyroid Imaging Reporting and Data System. AJR Am. J. Roentgenol. 208(6), 1331–1341 (2017)CrossRefGoogle Scholar
  19. 19.
    S.M. Ha, H.S. Ahn, J.H. Baek, H.Y. Ahn, Y.J. Chung, B.Y. Cho, S.B. Park, Validation of three scoring risk-stratification models for thyroid nodules. Thyroid 27(12), 1550–1557 (2017)CrossRefGoogle Scholar
  20. 20.
    D.G. Na, J.H. Baek, J.Y. Sung, J.H. Kim, J.K. Kim, Y.J. Choi, H. Seo, Thyroid Imaging Reporting and Data System Risk Stratification of Thyroid Nodules: Categorization Based on Solidity and Echogenicity. Thyroid 26(4), 562–572 (2016)CrossRefGoogle Scholar
  21. 21.
    E.J. Ha, D.G. Na, J.H. Baek, J.Y. Sung, J.H. Kim, S.Y. Kang, US Fine-Needle Aspiration Biopsy for Thyroid Malignancy: Diagnostic Performance of Seven Society Guidelines Applied to 2000 Thyroid Nodules. Radiology 287(3), 893–900 (2018)CrossRefGoogle Scholar
  22. 22.
    W.D. Middleton, S.A. Teefey, C.C. Reading, J.E. Langer, M.D. Beland, M.M. Szabunio, T.S. Desser, Comparison of Performance Characteristics of American College of Radiology TI-RADS, Korean Society of Thyroid Radiology TIRADS, and American Thyroid Association Guidelines. AJR Am. J. Roentgenol. 210(5), 1148–1154 (2018)CrossRefGoogle Scholar
  23. 23.
    G. Grani, L. Lamartina, V. Ascoli, D. Bosco, M. Biffoni, L. Giacomelli, M. Maranghi, R. Falcone, V. Ramundo, V. Cantisani, S. Filetti, and C. Durante, Reducing the number of unnecessary thyroid biopsies while improving diagnostic accuracy: towards the “right” TIRADS. J. Clin. Endocrinol. Metab. (2018). [Epub ahead of print]Google Scholar
  24. 24.
    G. Grani, L. Lamartina, V. Cantisani, M. Maranghi, P. Lucia, C. Durante, Interobserver agreement of various thyroid imaging reporting and data systems. Endocr. Connect. 7(1), 1–7 (2018)CrossRefGoogle Scholar
  25. 25.
    G. Grani, L. Lamartina, V. Ascoli, D. Bosco, F. Nardi, F. D’Ambrosio, A. Rubini, L. Giacomelli, M. Biffoni, S. Filetti, C. Durante, V. Cantisani, Ultrasonography scoring systems can rule out malignancy in cytologically indeterminate thyroid nodules. Endocrine 57(2), 256–261 (2017)CrossRefGoogle Scholar
  26. 26.
    V. Cantisani, P. Maceroni, V. D’Andrea, G. Patrizi, M. Di Segni, C. De Vito, H. Grazhdani, A.M. Isidori, E. Giannetta, A. Redler, F. Frattaroli, L. Giacomelli, G. Di Rocco, C. Catalano, F. D’Ambrosio, Strain ratio ultrasound elastography increases the accuracy of colour-Doppler ultrasound in the evaluation of Thy-3 nodules. A bi-centre university experience. Eur. Radiol. 26(5), 1441–1449 (2016)CrossRefGoogle Scholar
  27. 27.
    J. Sun, J. Cai, X. Wang, Real-time ultrasound elastography for differentiation of benign and malignant thyroid nodules: a meta-analysis. J. Ultrasound Med. 33(3), 495–502 (2014)CrossRefGoogle Scholar
  28. 28.
    S.A. Razavi, T.A. Hadduck, G. Sadigh, B.A. Dwamena, Comparative effectiveness of elastographic and B-mode ultrasound criteria for diagnostic discrimination of thyroid nodules: a meta-analysis. AJR Am. J. Roentgenol. 200(6), 1317–1326 (2013)CrossRefGoogle Scholar
  29. 29.
    M. Ghajarzadeh, F. Sodagari, M. Shakiba, Diagnostic accuracy of sonoelastography in detecting malignant thyroid nodules: a systematic review and meta-analysis. Am. J. Roentgenol. 202(4), W379–W389 (2014)CrossRefGoogle Scholar
  30. 30.
    F.J. Dong, M. Li, Y. Jiao, J.F. Xu, Y. Xiong, L. Zhang, H. Luo, Z.M. Ding, Acoustic Radiation Force Impulse imaging for detecting thyroid nodules: a systematic review and pooled meta-analysis. Med. Ultrason 17(2), 192–199 (2015)CrossRefGoogle Scholar
  31. 31.
    P. Lin, M. Chen, B. Liu, S. Wang, X. Li, Diagnostic performance of shear wave elastography in the identification of malignant thyroid nodules: a meta-analysis. Eur. Radiol. 24(11), 2729–2738 (2014)CrossRefGoogle Scholar
  32. 32.
    J. Zhan, J.M. Jin, X.H. Diao, Y. Chen, Acoustic radiation force impulse imaging (ARFI) for differentiation of benign and malignant thyroid nodules--A meta-analysis. Eur. J. Radiol. 84(11), 2181–2186 (2015)CrossRefGoogle Scholar
  33. 33.
    D. Cosgrove, R. Barr, J. Bojunga, V. Cantisani, M.C. Chammas, M. Dighe, S. Vinayak, J.M. Xu, C.F. Dietrich, WFUMB Guidelines and Recommendations on the Clinical Use of Ultrasound Elastography: Part 4. Thyroid. Ultrasound Med. Biol. 43(1), 4–26 (2017)CrossRefGoogle Scholar
  34. 34.
    V. Cantisani, H. Grazhdani, P. Ricci, K. Mortele, M. Di Segni, V. D’Andrea, A. Redler, G. Di Rocco, L. Giacomelli, E. Maggini, C. Chiesa, S.M. Erturk, S. Sorrenti, C. Catalano, F. D’Ambrosio, Q-elastosonography of solid thyroid nodules: assessment of diagnostic efficacy and interobserver variability in a large patient cohort. Eur. Radiol. 24(1), 143–150 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Grazhdani, V. Cantisani, P. Lodise, G. Di Rocco, M.C. Proietto, E. Fioravanti, A. Rubini, A. Redler, Prospective evaluation of acoustic radiation force impulse technology in the differentiation of thyroid nodules: accuracy and interobserver variability assessment. J. Ultrasound 17(1), 13–20 (2014)CrossRefGoogle Scholar
  36. 36.
    Y. Wang, H.J. Dan, H.Y. Dan, T. Li, B. Hu, Differential diagnosis of small single solid thyroid nodules using real-time ultrasound elastography. J. Int. Med. Res. 38(2), 466–472 (2010)CrossRefGoogle Scholar
  37. 37.
    C. Oliver, J. Vaillant-Lombard, F. Albarel, J. Berbis, J.B. Veyrieres, F. Sebag, P. Petit, What is the contribution of elastography to thyroid nodules evaluation? Ann. Endocrinol. 72(2), 120–124 (2011)CrossRefGoogle Scholar
  38. 38.
    P.S. Sidhu, V. Cantisani, C.F. Dietrich, O.H. Gilja, A. Saftoiu, E. Bartels, M. Bertolotto, F. Calliada, D.A. Clevert, D. Cosgrove, A. Deganello, M. D’Onofrio, F.M. Drudi, S. Freeman, C. Harvey, C. Jenssen, E.M. Jung, A.S. Klauser, N. Lassau, M.F. Meloni, E. Leen, C. Nicolau, C. Nolsoe, F. Piscaglia, F. Prada, H. Prosch, M. Radzina, L. Savelli, H.P. Weskott, H. Wijkstra, The EFSUMB Guidelines and Recommendations for the Clinical Practice of Contrast-Enhanced Ultrasound (CEUS) in Non-Hepatic Applications: Update 2017 (Long Version). Ultraschall Med. 39(2), e2–e44 (2018)CrossRefGoogle Scholar
  39. 39.
    X. Ma, B. Zhang, W. Ling, R. Liu, H. Jia, F. Zhu, M. Wang, H. Liu, J. Huang, L. Liu, Contrast-enhanced sonography for the identification of benign and malignant thyroid nodules: Systematic review and meta-analysis. J. Clin. Ultrasound 44(4), 199–209 (2016)CrossRefGoogle Scholar
  40. 40.
    Y.Z. Zhang, T. Xu, H.Y. Gong, C.Y. Li, X.H. Ye, H.J. Lin, M.P. Shen, Y. Duan, T. Yang, X.H. Wu, Application of high-resolution ultrasound, real-time elastography, and contrast-enhanced ultrasound in differentiating solid thyroid nodules. Medicine 95(45), e5329 (2016)CrossRefGoogle Scholar
  41. 41.
    R.L. Ferris, Z. Baloch, V. Bernet, A. Chen, T.R. Fahey, I. Ganly, S.P. Hodak, E. Kebebew, K.N. Patel, A. Shaha, D.L. Steward, R.P. Tufano, S.M. Wiseman, S.E. Carty, American Thyroid Association Statement on Surgical Application of Molecular Profiling for Thyroid Nodules: Current Impact on Perioperative Decision Making. Thyroid 25(7), 760–768 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of EndocrinologyJiangsu Province Official HospitalNanjingChina
  2. 2.Department of Endocrinologythe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
  3. 3.Nanjing Foreign Languages SchoolNanjingChina
  4. 4.Department of UltrasoundJiangsu Province Hospital on Integration of Chinese and Western MedicineNanjingChina
  5. 5.Department of Ultrasoundthe First Affiliated Hospital with Nanjing Medical UniversityNanjingChina
  6. 6.Department of EndocrinologyJiangsu Province Hospital on Integration of Chinese and Western MedicineNanjingChina

Personalised recommendations