pp 1–8 | Cite as

The novel myokine irisin: clinical implications and potential role as a biomarker for sarcopenia in postmenopausal women

  • Hye-Sun Park
  • Hyun Chang Kim
  • Dongdong Zhang
  • Hyungseon Yeom
  • Sung-Kil LimEmail author
Original Article



To clarify the association of circulating irisin with muscle, liver and bone, and to evaluate irisin as a biomarker for sarcopenia in postmenopausal women.


Quadriceps cross-sectional area (QcCSA), bone mineral density (BMD), liver attenuation (measured in Hounsfield units (HU)) were assessed using quantitative computed tomography in 153 postmenopausal women, mean age of 72.20 ± 5.96 years. Muscle strength and physical performance were evaluated by handgrip test and short physical performance battery, respectively. Serum irisin was measured by an enzyme-linked immunosorbent assay kit. In addition, 147 young women were recruited as a reference group to define cut-off values for sarcopenia.


Circulating irisin was positively correlated with QcCSA/body weight (BW) and liver HU even after adjusting for multiple covariates, and the serum level was significantly lower in the sarcopenia group (QcCSA/BW<−2SD of the mean values for young women) than in the presarcopenia (−2SD≤QcCSA/BW<−1SD) or control groups (1SD≤QcCSA/BW<2SD). Logistic regression models showed that the relationship between circulating irisin and prevalence of sarcopenia remained significant after adjusting for confounding factors (per 1.0 ng/mL decrease of irisin, odds-ratio = 1.95, 95% confidence interval 1.33–2.87, p-value = 0.001).


In postmenopausal women, serum irisin may be used as a biomarker for sarcopenia, and we showed the potential for the development of irisin-based early screening and staging tool for sarcopenia.


Irisin Sarcopenia Aging Screening 



This work was partially supported by the National Research Foundation of Korea (grant number NRF-2014R1A2A1A11053818).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

12020_2018_1814_MOESM1_ESM.docx (19 kb)
Supplementary Tables


  1. 1.
    A.J. Cruz-Jentoft, J.P. Baeyens, J.M. Bauer, Y. Boirie, T. Cederholm, F. Landi, F.C. Martin, J.P. Michel, Y. Rolland, S.M. Schneider, E. Topinkova, M. Vandewoude, M. Zamboni, P., European Working Group on Sarcopenia in Older, Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 39(4), 412–423 (2010)CrossRefGoogle Scholar
  2. 2.
    G. Biomarkers, Definitions working, biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 69(3), 89–95 (2001)CrossRefGoogle Scholar
  3. 3.
    M. Cesari, B.W. Penninx, M. Pahor, F. Lauretani, A.M. Corsi, G. Rhys Williams, J.M. Guralnik, L. Ferrucci, Inflammatory markers and physical performance in older persons: the InCHIANTI study. J. Gerontol. A. Biol. Sci. Med. Sci. 59(3), 242–248 (2004)CrossRefGoogle Scholar
  4. 4.
    M. Cesari, R.A. Fielding, M. Pahor, B. Goodpaster, M. Hellerstein, G.A. van Kan, S.D. Anker, S. Rutkove, J.W. Vrijbloed, M. Isaac, Y. Rolland, C. M’Rini, M. Aubertin-Leheudre, J.M. Cedarbaum, M. Zamboni, C.C. Sieber, D. Laurent, W.J. Evans, R. Roubenoff, J.E. Morley, B. Vellas, S. International Working Group on, Biomarkers of sarcopenia in clinical trials-recommendations from the International Working Group on Sarcopenia. J. Cachex. Sarcopenia Muscle 3(3), 181–190 (2012)CrossRefGoogle Scholar
  5. 5.
    P. Lee, J.D. Linderman, S. Smith, R.J. Brychta, J. Wang, C. Idelson, R.M. Perron, C.D. Werner, G.Q. Phan, U.S. Kammula, E. Kebebew, K. Pacak, K.Y. Chen, F.S. Celi, Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell. Metab. 19(2), 302–309 (2014)CrossRefGoogle Scholar
  6. 6.
    H.Y. Choi, S. Kim, J.W. Park, N.S. Lee, S.Y. Hwang, J.Y. Huh, H.C. Hong, H.J. Yoo, S.H. Baik, B.S. Youn, C.S. Mantzoros, K.M. Choi, Implication of circulating irisin levels with brown adipose tissue and sarcopenia in humans. J. Clin. Endocrinol. Metab. 99(8), 2778–2785 (2014)CrossRefGoogle Scholar
  7. 7.
    S. Pekkala, P.K. Wiklund, J.J. Hulmi, J.P. Ahtiainen, M. Horttanainen, E. Pollanen, K.A. Makela, H. Kainulainen, K. Hakkinen, K. Nyman, M. Alen, K.H. Herzig, S. Cheng, Are skeletal muscle FNDC5 gene expression and irisin release regulated by exercise and related to health? J. Physiol. 591(21), 5393–5400 (2013)CrossRefGoogle Scholar
  8. 8.
    M.J. Lee, S.A. Lee, B.Y. Nam, S. Park, S.H. Lee, H.J. Ryu, Y.E. Kwon, Y.L. Kim, K.S. Park, H.J. Oh, J.T. Park, S.H. Han, D.R. Ryu, S.W. Kang, T.H. Yoo, Irisin, a novel myokine is an independent predictor for sarcopenia and carotid atherosclerosis in dialysis patients. Atherosclerosis 242(2), 476–482 (2015)CrossRefGoogle Scholar
  9. 9.
    S.A. Polyzos, J. Kountouras, A.D. Anastasilakis, E.V. Geladari, C.S. Mantzoros, Irisin in patients with nonalcoholic fatty liver disease. Metabolism 63(2), 207–217 (2014)CrossRefGoogle Scholar
  10. 10.
    A. Palermo, R. Strollo, E. Maddaloni, D. Tuccinardi, L. D’Onofrio, S.I. Briganti, G. Defeudis, M.De Pascalis, M.C. Lazzaro, G. Colleluori, S. Manfrini, P. Pozzilli, N. Napoli, Irisin is associated with osteoporotic fractures independently of bone mineral density, body composition or daily physical activity. Clin. Endocrinol. 82(4), 615–619 (2015)CrossRefGoogle Scholar
  11. 11.
    J.J. Liu, M.D. Wong, W.C. Toy, C.S. Tan, S. Liu, X.W. Ng, S. Tavintharan, C.F. Sum, S.C. Lim, Lower circulating irisin is associated with type 2 diabetes mellitus. J. Diabetes Complicat. 27(4), 365–369 (2013)CrossRefGoogle Scholar
  12. 12.
    J.J. Liu, S. Liu, M.D. Wong, C.S. Tan, S. Tavintharan, C.F. Sum, S.C. Lim, Relationship between circulating irisin, renal function and body composition in type 2 diabetes. J. Diabetes Complicat. 28(2), 208–213 (2014)CrossRefGoogle Scholar
  13. 13.
    M.H. Lee, D.R. Kang, H.C. Kim, S.V. Ahn, K.T. Khaw, I. Suh, A 24-year follow-up study of blood pressure tracking from childhood to adulthood in Korea: the Kangwha Study. Yonsei. Med. J. 55(2), 360–366 (2014)CrossRefGoogle Scholar
  14. 14.
    D.R. Matthews, J.P. Hosker, A.S. Rudenski, B.A. Naylor, D.F. Treacher, R.C. Turner, Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28(7), 412–419 (1985)CrossRefGoogle Scholar
  15. 15.
    J.E. Adams, Quantitative computed tomography. Eur. J. Radiol. 71(3), 415–424 (2009)CrossRefGoogle Scholar
  16. 16.
    M. Ochi, Y. Tabara, T. Kido, E. Uetani, N. Ochi, M. Igase, T. Miki, K. Kohara, Quadriceps sarcopenia and visceral obesity are risk factors for postural instability in the middle-aged to elderly population. Geriatr. Gerontol. Int 10(3), 233–243 (2010)CrossRefGoogle Scholar
  17. 17.
    T.N. Kim, M.S. Park, S.J. Yang, H.J. Yoo, H.J. Kang, W. Song, J.A. Seo, S.G. Kim, N.H. Kim, S.H. Baik, D.S. Choi, K.M. Choi, Body size phenotypes and low muscle mass: the Korean sarcopenic obesity study (KSOS). J. Clin. Endocrinol. Metab. 98(2), 811–817 (2013)CrossRefGoogle Scholar
  18. 18.
    J.M. Guralnik, E.M. Simonsick, L. Ferrucci, R.J. Glynn, L.F. Berkman, D.G. Blazer, P.A. Scherr, R.B. Wallace, A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J. Gerontol. 49(2), M85–M94 (1994)CrossRefGoogle Scholar
  19. 19.
    L.J. Falcon, M.O. Harris-Love, Sarcopenia and the New ICD-10-CM Code: Screening, Staging, and Diagnosis Considerations. Fed. Pract. 34(7), 24–32 (2017)PubMedPubMedCentralGoogle Scholar
  20. 20.
    J. Woo, J. Leung, J.E. Morley, Validating the SARC-F: a suitable community screening tool for sarcopenia? J. Am. Med. Dir. Assoc. 15(9), 630–634 (2014)CrossRefGoogle Scholar
  21. 21.
    J.S. Chang, T.H. Kim, T.T. Nguyen, K.S. Park, N. Kim, I.D. Kong, Circulating irisin levels as a predictive biomarker for sarcopenia: A cross-sectional community-based study. Geriatr. Gerontol. Int. (2017)
  22. 22.
    E.S. Choi, M.K. Kim, M.K. Song, J.M. Kim, E.S. Kim, W.J. Chung, K.S. Park, K.B. Cho, J.S. Hwang, B.K. Jang, Association between serum irisin levels and non-alcoholic fatty liver disease in health screen examinees. PLoS One 9(10), e110680 (2014)CrossRefGoogle Scholar
  23. 23.
    Y.K. Choi, M.K. Kim, K.H. Bae, H.A. Seo, J.Y. Jeong, W.K. Lee, J.G. Kim, I.K. Lee, K.G. Park, Serum irisin levels in new-onset type 2 diabetes. Diabetes Res. Clin. Pract. 100(1), 96–101 (2013)CrossRefGoogle Scholar
  24. 24.
    J.M. Moreno-Navarrete, F. Ortega, M. Serrano, E. Guerra, G. Pardo, F. Tinahones, W. Ricart, J.M. Fernández-Real, Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J. Clin. Endocrinol. & Metab. 98(4), E769–E778 (2013)CrossRefGoogle Scholar
  25. 25.
    J.Y. Huh, G. Panagiotou, V. Mougios, M. Brinkoetter, M.T. Vamvini, B.E. Schneider, C.S. Mantzoros, FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. mRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism 61(12), 1725–1738 (2012)CrossRefGoogle Scholar
  26. 26.
    K. Hee Park, L. Zaichenko, M. Brinkoetter, B. Thakkar, A. Sahin-Efe, K.E. Joung, M.A. Tsoukas, E.V. Geladari, J.Y. Huh, F. Dincer, Circulating irisin in relation to insulin resistance and the metabolic syndrome. J. Clin. Endocrinol. Metab. 98(12), 4899–4907 (2013)CrossRefGoogle Scholar
  27. 27.
    A. Stengel, T. Hofmann, M. Goebel-Stengel, U. Elbelt, P. Kobelt, B.F. Klapp, Circulating levels of irisin in patients with anorexia nervosa and different stages of obesity–correlation with body mass index. Peptides 39, 125–130 (2013)CrossRefGoogle Scholar
  28. 28.
    M.P. Jedrychowski, C.D. Wrann, J.A. Paulo, K.K. Gerber, J. Szpyt, M.M. Robinson, K.S. Nair, S.P. Gygi, B.M. Spiegelman, Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell. Metab. 22(4), 734–740 (2015)CrossRefGoogle Scholar
  29. 29.
    N. Perakakis, G.A. Triantafyllou, J.M. Fernandez-Real, J.Y. Huh, K.H. Park, J. Seufert, C.S. Mantzoros, Physiology and role of irisin in glucose homeostasis. Nat. Rev. Endocrinol. 13(6), 324–337 (2017)CrossRefGoogle Scholar
  30. 30.
    I. Zeb, D. Li, K. Nasir, R. Katz, V.N. Larijani, M.J. Budoff, Computed tomography scans in the evaluation of fatty liver disease in a population based study: the multi-ethnic study of atherosclerosis. Acad. Radiol. 19(7), 811–818 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Hye-Sun Park
    • 1
  • Hyun Chang Kim
    • 2
  • Dongdong Zhang
    • 3
  • Hyungseon Yeom
    • 2
  • Sung-Kil Lim
    • 4
    Email author
  1. 1.Department of EndocrinologyH Plus Yangji HospitalSeoulRepublic of Korea
  2. 2.Department of Preventive MedicineYonsei University College of MedicineSeoulRepublic of Korea
  3. 3.Brain Korea 21 PLUS Project for Medical ScienceYonsei UniversitySeoulRepublic of Korea
  4. 4.Division of Endocrinology and Metabolism, Department of Internal MedicineYonsei University College of MedicineSeoulRepublic of Korea

Personalised recommendations