Advertisement

Endocrine

pp 1–17 | Cite as

Inactivation of the Ras/MAPK/PPARγ signaling axis alleviates diabetic mellitus-induced erectile dysfunction through suppression of corpus cavernosal endothelial cell apoptosis by inhibiting HMGCS2 expression

  • Zhuo Zhang
  • Hai-Yan Zhang
  • Ying Zhang
  • Hai LiEmail author
Original Article
  • 88 Downloads

Abstract

Purpose

Diabetic mellitus-induced erectile dysfunction (DMED) represents a significant complication associated with diabetes mellitus (DM) that greatly affects human life quality. Various reports have highlighted the involvement of mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) in the regulation of mitochondrial fatty acid oxidation, which has also been linked with DM. Through bioinformatics analysis, HMGCS2 was determined to be a novel target among DM patients suffering from erectile dysfunction (ED), and enriched in the Ras/ERK/PPAR signaling axis. Owing to the fact that the key mechanism HMGCS2 involved in DM remains largely unknown, we set out to investigate the role of the Ras/MAPK/PPARγ signaling axis and HMGCS2 in the corpus cavernosal endothelial cells (CCECs) of rats with DMED.

Methods

Firstly, bioinformatics analysis was used to screen out differentially expressed genes in DMED. Then, to investigate the influence of the Ras/MAPK/PPARγ signaling axis and HMGCS2 on DMED, a rat model of DMED was established and injected with Simvastatin and si-Hmgcs2. The individual expression patterns of Ras, MAPK, PPARγ and HMGCS2 were determined by RT-qPCR, immunohistochemistry and western blot analysis methods. Afterwards, to investigate the mechanism of Ras/MAPK/PPARγ signaling axis and HMGCS2, CCECs were isolated from DMED rats and transfected with agonists and inhibitors of the Ras/MAPK/PPARγ signaling axis and siRNA of HMGCS2, with their respective functions in apoptosis and impairment of CCECs evaluated using TUNEL staining and flow cytometry.

Results

Microarray analysis and KEGG pathway enrichment analysis revealed that Ras/ERK/PPAR signaling axis mediated HMGCS2 in DMED. Among the DMED rats, the Ras/MAPK/PPAR signaling axis was also activated while the expression of HMGCS2 was upregulated. The activation of Ras was determined to be capable of upregulating ERK expression which resulted in the inhibition of the transcription of PPARγ and subsequent upregulation of HMGCS2 expression. The inhibited activation of the Ras/ERK/PPAR signaling axis and silencing HMGCS2 were observed to provide an alleviatory effect on the injury of DMED while acting to inhibit the apoptosis of CCECs.

Conclusion

Collectively, the key findings suggested that suppression of the Ras/MAPK/PPARγ signaling axis could downregulate expression of HMGCS2, so as to alleviate DMED. This study defines the potential treatment for DMED through inhibition of the Ras/MAPK/PPARγ signaling axis and silencing HMGCS2.

Keywords

Diabetic mellitus-induced erectile dysfunction Corpus cavernosal endothelial cells Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase 2  Ras/MAPK/PPARγ signaling axis  Apoptosis 

Notes

Acknowledgements

We would like to acknowledge the helpful comments on this paper received from our reviewers.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study was conducted in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The protocol was approved by the Institutional Animal Care and Use Committee of China-Japan Union Hospital of Jilin University.

References

  1. 1.
    X. Wang, C. Liu, S. Li, Y. Xu, P. Chen, Y. Liu, Q. Ding, W. Wahafu, B. Hong, M. Yang, Hypoxia precondition promotes adipose-derived mesenchymal stem cells based repair of diabetic erectile dysfunction via augmenting angiogenesis and neuroprotection. PLoS ONE 10, e0118951 (2015)CrossRefGoogle Scholar
  2. 2.
    R. Shamloul, H. Ghanem, Erectile dysfunction. Lancet 381, 153–165 (2013)CrossRefGoogle Scholar
  3. 3.
    S. Bhasin, P. Enzlin, A. Coviello, R. Basson, Sexual dysfunction in men and women with endocrine disorders. Lancet 369, 597–611 (2007)CrossRefGoogle Scholar
  4. 4.
    W.J. Li, M. Xu, M. Gu, D.C. Zheng, J. Guo, Z. Cai, Z. Wang, Losartan preserves erectile function by suppression of apoptosis and fibrosis of corpus cavernosum and corporal veno-occlusive dysfunction in diabetic rats. Cell. Physiol. Biochem. 42, 333–345 (2017)CrossRefGoogle Scholar
  5. 5.
    A. Castela, C. Costa, Molecular mechanisms associated with diabetic endothelial-erectile dysfunction. Nat. Rev. Urol. 13, 266–274 (2016)CrossRefGoogle Scholar
  6. 6.
    H.A. Toque, R.W. Caldwell, New approaches to the design and discovery of therapies to prevent erectile dysfunction. Expert Opin. Drug Discov. 9, 1447–1469 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Chen, C.L. Sun, Z. Chen, H.J. Xiao, T. Qi, X.M. Li, X. Tao, B. Zhang, Separation, culture and identification of SD rat corpus cavernosal endothelial cells. Andrologia 44, 250–255 (2012)CrossRefGoogle Scholar
  8. 8.
    T. Rescigno, A. Capasso, M.F. Tecce, Involvement of nutrients and nutritional mediators in mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase gene expression. J. Cell. Physiol. 233, 3306–3314 (2018)CrossRefGoogle Scholar
  9. 9.
    J.J. Pitt, H. Peters, A. Boneh, J. Yaplito-Lee, S. Wieser, K. Hinderhofer, D. Johnson, J. Zschocke, Mitochondrial 3-hydroxy-3-methylglutaryl-CoA synthase deficiency: urinary organic acid profiles and expanded spectrum of mutations. J. Inherit. Metab. Dis. 38, 459–466 (2015)CrossRefGoogle Scholar
  10. 10.
    M. Shimizu, H. Moriwaki, Synergistic effects of PPARgamma ligands and retinoids in cancer treatment. PPAR Res. 2008, 181047 (2008)CrossRefGoogle Scholar
  11. 11.
    R.A. Hegele, Retinoid X receptor heterodimers in the metabolic syndrome. N. Engl. J. Med. 353, 2088 (2005)CrossRefGoogle Scholar
  12. 12.
    J. Knabl, R. Huttenbrenner, S. Hutter, M. Gunthner-Biller, T. Vrekoussis, K. Karl, K. Friese, F. Kainer, U. Jeschke, Peroxisome proliferator-activated receptor-gamma (PPARgamma) is down regulated in trophoblast cells of gestational diabetes mellitus (GDM) and in trophoblast tumour cells BeWo in vitro after stimulation with PPARgamma agonists. J. Perinat. Med. 42, 179–187 (2014)CrossRefGoogle Scholar
  13. 13.
    J. Li, L. Peng, H. Du, Y. Wang, B. Lu, Y. Xu, X. Ye, J. Shao, The protective effect of beraprost sodium on diabetic cardiomyopathy through the inhibition of the p38 MAPK signaling pathway in high-fat-induced SD rats. Int. J. Endocrinol. 2014, 901437 (2014)PubMedPubMedCentralGoogle Scholar
  14. 14.
    P.S. Leung, Current research of the RAS in diabetes mellitus. Adv. Exp. Med. Biol. 690, 131–153 (2010)CrossRefGoogle Scholar
  15. 15.
    E. Burgermeister, T. Friedrich, I. Hitkova, I. Regel, H. Einwachter, W. Zimmermann, C. Rocken, A. Perren, M.B. Wright, R.M. Schmid, R. Seger, M.P. Ebert, The Ras inhibitors caveolin-1 and docking protein 1 activate peroxisome proliferator-activated receptor gamma through spatial relocalization at helix 7 of its ligand-binding domain. Mol. Cell. Biol. 31, 3497–3510 (2011)CrossRefGoogle Scholar
  16. 16.
    G.K. Smyth, Linear models and empirical bayes methods for assessing differential expression in microarray experiments. Stat. Appl. Genet. Mol. Biol. 3, Article3 (2004)CrossRefGoogle Scholar
  17. 17.
    O. Zeng, F. Li, Y. Li, L. Li, T. Xiao, C. Chu, J. Yang, Effect of ovel gasotransmitter hydrogen sulfide on renal fibrosis and connexins expression in diabetic rats. Bioengineered 7, 314–320 (2016)CrossRefGoogle Scholar
  18. 18.
    C. Federau, P. Hagmann, P. Maeder, M. Muller, R. Meuli, M. Stuber, K. O’Brien, Dependence of brain intravoxel incoherent motion perfusion parameters on the cardiac cycle. PLoS ONE 8, e72856 (2013)CrossRefGoogle Scholar
  19. 19.
    F. Guo, X. Liu, Q. Qing, Y. Sang, C. Feng, X. Li, L. Jiang, P. Su, Y. Wang, EML4-ALK induces epithelial-mesenchymal transition consistent with cancer stem cell properties in H1299 non-small cell lung cancer cells. Biochem. Biophys. Res. Commun. 459, 398–404 (2015)CrossRefGoogle Scholar
  20. 20.
    S. Renauld, K. Tremblay, S. Ait-Benichou, M. Simoneau-Roy, H. Garneau, O. Staub, A. Chraibi, Stimulation of ENaC activity by rosiglitazone is PPARgamma-dependent and correlates with SGK1 expression increase. J. Membr. Biol. 236, 259–270 (2010)CrossRefGoogle Scholar
  21. 21.
    M.A. Kostiuk, M.M. Corvi, B.O. Keller, G. Plummer, J.A. Prescher, M.J. Hangauer, C.R. Bertozzi, G. Rajaiah, J.R. Falck, L.G. Berthiaume, Identification of palmitoylated mitochondrial proteins using a bio-orthogonal azido-palmitate analogue. FASEB J. 22, 721–732 (2008)CrossRefGoogle Scholar
  22. 22.
    M. Kim, E.C. Hwang, I.K. Park, K. Park, Insulin-like growth factor-1 gene delivery may enhance the proliferation of human corpus cavernosal smooth muscle cells. Urology 76(511), e515–e519 (2010)Google Scholar
  23. 23.
    K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25, 402–408 (2001)CrossRefGoogle Scholar
  24. 24.
    T. Chen, J. Zhu, C. Zhang, K. Huo, Z. Fei, X.F. Jiang, Protective effects of SKF-96365, a non-specific inhibitor of SOCE, against MPP+-induced cytotoxicity in PC12 cells: potential role of Homer1. PLoS ONE 8, e55601 (2013)CrossRefGoogle Scholar
  25. 25.
    H.O. Larsen, A.S. Roug, K. Nielsen, C.S. Sondergaard, P. Hokland, Nonviral transfection of leukemic primary cells and cells lines by siRNA-a direct comparison between Nucleofection and Accell delivery. Exp. Hematol. 39, 1081–1089 (2011)CrossRefGoogle Scholar
  26. 26.
    L. Hu, S. Qi, K. Zhang, Q. Fu, Essential role of brain-derived neurotrophic factor (bdnf) in diabetic erectile dysfunction. Andrologia 50, (2018). 10.1111/and.12924CrossRefGoogle Scholar
  27. 27.
    S.K. Shukla, W. Liu, K. Sikder, S. Addya, A. Sarkar, Y. Wei, K. Rafiq, HMGCS2 is a key ketogenic enzyme potentially involved in type 1 diabetes with high cardiovascular risk. Sci. Rep. 7, 4590 (2017)CrossRefGoogle Scholar
  28. 28.
    M. Paul, A. Poyan Mehr, R. Kreutz, Physiology of local renin-angiotensin systems. Physiol. Rev. 86, 747–803 (2006)CrossRefGoogle Scholar
  29. 29.
    K.P. Nunes, H.A. Toque, R.B. Caldwell, R.W. Caldwell, R.C. Webb, Extracellular signal-regulated kinase (ERK) inhibition decreases arginase activity and improves corpora cavernosal relaxation in streptozotocin (STZ)-induced diabetic mice. J. Sex. Med. 8, 3335–3344 (2011)CrossRefGoogle Scholar
  30. 30.
    K. Chehaibi, S. Nouira, K. Mahdouani, S. Hamdi, M. Rouis, M.N. Slimane, Effect of the PPARgamma C161T gene variant on serum lipids in ischemic stroke patients with and without type 2 diabetes mellitus. J. Mol. Neurosci. 54, 730–738 (2014)CrossRefGoogle Scholar
  31. 31.
    L. Chao, B. Marcus-Samuels, M.M. Mason, J. Moitra, C. Vinson, E. Arioglu, O. Gavrilova, M.L. Reitman, Adipose tissue is required for the antidiabetic, but not for the hypolipidemic, effect of thiazolidinediones. J. Clin. Invest. 106, 1221–1228 (2000)CrossRefGoogle Scholar
  32. 32.
    D. Falcone, L. Gallelli, A. Di Virgilio, L. Tucci, M. Scaramuzzino, R. Terracciano, G. Pelaia, R. Savino, Effects of simvastatin and rosuvastatin on RAS protein, matrix metalloproteinases and NF-kappaB in lung cancer and in normal pulmonary tissues. Cell. Prolif. 46, 172–182 (2013)CrossRefGoogle Scholar
  33. 33.
    N.R. Hadi, M.A. Abdelhussein, A.R. Rudha, D.A. Jamil, H.A. Al-Aubaidy, Simvastatin use in patients with type 2 diabetes mellitus: the effects on oxidative stress. Oman Med. J. 30, 237–240 (2015)CrossRefGoogle Scholar
  34. 34.
    E. Profumo, B. Buttari, L. Saso, R. Rigano, Pleiotropic effects of statins in atherosclerotic disease: focus on the antioxidant activity of atorvastatin. Curr. Top. Med. Chem. 14, 2542–2551 (2014)CrossRefGoogle Scholar
  35. 35.
    S.H. Ko, O.K. Hong, J.W. Kim, Y.B. Ahn, K.H. Song, B.Y. Cha, H.Y. Son, M.J. Kim, I.K. Jeong, K.H. Yoon, High glucose increases extracellular matrix production in pancreatic stellate cells by activating the renin-angiotensin system. J. Cell. Biochem. 98, 343–355 (2006)CrossRefGoogle Scholar
  36. 36.
    M.W. Lin, A.S. Lin, D.C. Wu, S.S. Wang, F.R. Chang, Y.C. Wu, Y.B. Huang, Euphol from Euphorbia tirucalli selectively inhibits human gastric cancer cell growth through the induction of ERK1/2-mediated apoptosis. Food Chem. Toxicol. 50, 4333–4339 (2012)CrossRefGoogle Scholar
  37. 37.
    K.Takebe, T.Nishiyama, S.Hayashi, S.Hashimoto, T.Fujishiro, N.Kanzaki, K.Kawakita, K.Iwasa, R.Kuroda, M.Kurosaka, Regulation of p38 MAPK phosphorylation inhibits chondrocyte apoptosis in response to heat stress or mechanical stress. Int. J. Mol. Med. 27, 329–335 (2011).PubMedGoogle Scholar
  38. 38.
    T.M. Shiju, R. Rajkumar, N.G. Rajesh, P. Viswanathan, Aqueous extract of Allium sativum L bulbs offer nephroprotection by attenuating vascular endothelial growth factor and extracellular signal-regulated kinase-1 expression in diabetic rats. Indian J. Exp. Biol. 51, 139–148 (2013)PubMedGoogle Scholar
  39. 39.
    H. Hirata, K. Kawamoto, N. Kikuno, T. Kawakami, K. Kawakami, S. Saini, S. Yamamura, R. Dahiya, Restoring erectile function by antioxidant therapy in diabetic rats. J. Urol. 182, 2518–2525 (2009)CrossRefGoogle Scholar
  40. 40.
    A. Vila-Brau, A.L. De Sousa-Coelho, C. Mayordomo, D. Haro, P.F. Marrero, Human HMGCS2 regulates mitochondrial fatty acid oxidation and FGF21 expression in HepG2 cell line. J. Biol. Chem. 286, 20423–20430 (2011)CrossRefGoogle Scholar
  41. 41.
    M. Brioschi, S. Lento, E. Tremoli, C. Banfi, Proteomic analysis of endothelial cell secretome: a means of studying the pleiotropic effects of Hmg-CoA reductase inhibitors. J. Proteom. 78, 346–361 (2013)CrossRefGoogle Scholar
  42. 42.
    N. Makdissy, K. Haddad, C. Mouawad, I. Popa, M. Younsi, P. Valet, L. Brunaud, O. Ziegler, D. Quilliot, Regulation of SREBPs by sphingomyelin in adipocytes via a Caveolin and Ras-ERK-MAPK-CREB signaling pathway. PLoS ONE 10, e0133181 (2015)CrossRefGoogle Scholar
  43. 43.
    S.W. Chen, C.T. Chou, C.C. Chang, Y.J. Li, S.T. Chen, I.C. Lin, S.H. Kok, S.J. Cheng, J.J. Lee, T.S. Wu, M.L. Kuo, B.R. Lin, HMGCS2 enhances invasion and metastasis via direct interaction with PPARalpha to activate Src signaling in colorectal cancer and oral cancer. Oncotarget 8, 22460–22476 (2017)PubMedGoogle Scholar
  44. 44.
    S.G. Bernier, S. Haldar, T. Michel, Bradykinin-regulated interactions of the mitogen-activated protein kinase pathway with the endothelial nitric-oxide synthase. J. Biol. Chem. 275, 30707–30715 (2000)CrossRefGoogle Scholar
  45. 45.
    S.G. Su, M. Yang, M.F. Zhang, Q.Z. Peng, M.Y. Li, L.P. Liu, S.Y. Bao, miR-107-mediated decrease of HMGCS2 indicates poor outcomes and promotes cell migration in hepatocellular carcinoma. Int. J. Biochem. Cell. Biol. 91, 53–59 (2017)CrossRefGoogle Scholar
  46. 46.
    R.A. Parker, Q. Huang, B. Tesfamariam, Influence of 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase inhibitors on endothelial nitric oxide synthase and the formation of oxidants in the vasculature. Atherosclerosis 169, 19–29 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of UrologyChina-Japan Union Hospital of Jilin UniversityChangchunP.R. China
  2. 2.Department of Gastrointestinal SurgeryChina-Japan Union Hospital of Jilin UniversityChangchunP.R. China
  3. 3.Department of PathologyChina-Japan Union Hospital of Jilin UniversityChangchunP.R. China

Personalised recommendations