Advertisement

Endocrine

pp 1–11 | Cite as

Is calcitonin gene-related peptide a modulator of menopausal vasomotor symptoms?

  • Maria Alice Oliveira
  • William Gustavo Lima
  • Dante Alighieri Schettini
  • Cristiane Queixa Tilelli
  • Valéria Ernestânia Chaves
Mini Review
  • 50 Downloads

Abstract

Purpose

Calcitonin gene-related peptide (CGRP) is a neuropeptide widely distributed in the central and peripheral nervous systems, which is known as a potent vasodilator. Postmenopausal women who experience hot flushes have high levels of plasma CGRP, suggesting its involvement in menopausal vasomotor symptoms.

Methods

In this review, we describe the biochemical aspects of CGRP and its effects associated with deficiencies of sexual hormones on skin temperature, vasodilatation, and sweating as well as the possible peripheral and central mechanisms involved in these events.

Results

Several studies have shown that the effects of CGRP on increasing skin temperature and inducing vasodilatation are potentiated by a deficiency of sex hormones, a common condition of postmenopausal women. Additionally, the medial preoptic area of the hypothalamus, involved in thermoregulation, contains over 25-fold more CGRP-immunoreactive cells in female rodents compared with male rodents, reinforcing the role of female sex hormones on the action of CGRP. Some studies suggest that ovarian hormone deficiency decreases circulating endogenous CGRP, inducing an upregulation of CGRP receptors. Consequently, the high CGRP receptor density, especially in blood vessels, amplifies the stimulatory effects of this neuropeptide to raise skin temperature in postmenopausal women during hot flushes.

Conclusions

The duration of the perception of each hot flush in a woman is brief, while local reddening after intradermal administration of α-CGRP persists for 1 to 6 h. This contrast remains unclear.

Keywords

Calcitonin gene-related peptide Hot flush Thermoregulation Menopause 

Abbreviations

AM

adrenomedullin;

AMY

amylin;

CGRP

calcitonin gene-related peptide;

CLR

calcitonin receptor-like receptor;

CREB

cAMP response element-binding;

CTR

Calcitonin receptor;

GnRH

gonadotropin-releasing hormone;

MeSH

medical subject heading;

POA

preoptic area;

PVN

hypothalamic paraventricular nucleus;

RAMP

receptor activity-modifying proteins;

Notes

Acknowledgements

The authors would like to thank Renato Helios Migliorini (in memoriam) for being an exemplary scientist and professor.

Funding

This work was supported by the Federal University of São João del-Rei. W.G.L. received a fellowship from the Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG).

Author contributions

All authors contributed to the development, analysis, and drafting of this article.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    S. Iyengar, M.H. Ossipov, K.W. Johnson, The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain (2017).  https://doi.org/10.1097/j.pain.0000000000000831 PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    F.A. Russell, R. King, S.J. Smillie, X. Kodji, S.D. Brain, Calcitonin gene-related peptide: physiology and pathophysiology. Physiol. Rev. (2014).  https://doi.org/10.1152/physrev.00034.2013 PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    A.J. Sorby-Adams, A.M. Marcoionni, E.R. Dempsey, J.A. Woenig, R.J. Turner, The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury. Int. J. Mol. Sci. (2017).  https://doi.org/10.3390/ijms18081788
  4. 4.
    W.G. Lima, G.H. Marques-Oliveira, T.M. da Silva, V.E. Chaves, Role of calcitonin gene-related peptide in energy metabolism. Endocrine (2017).  https://doi.org/10.1007/s12020-017-1404-4 PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    D.L. Hay, D.R. Poyner, Calcitonin gene-related peptide, adrenomedullin and flushing. Maturitas (2009).  https://doi.org/10.1016/j.maturitas.2009.08.011 PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    S. Sharma, A. Mahajan, V.R. Tandon, Calcitonin gene-related peptide and menopause. J. Midlife. Health (2010).  https://doi.org/10.4103/0976-7800.66985 PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    D.W. Sturdee, M.S. Hunter, P.M. Maki, P. Gupta, J. Sassarini, J.C. Stevenson, M.A. Lumsden, The menopausal hot flush: a review. Climacteric (2017).  https://doi.org/10.1080/13697137.2017.1306507 PubMedCrossRefPubMedCentralGoogle Scholar
  8. 8.
    H.R. Morris, M. Panico, T. Etienne, J. Tippins, S.I. Girgis, I. MacIntyre, Isolation and characterization of human calcitonin gene-related peptide. Nature 308, 746–748 (1984)PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    P.H. Steenbergh, J.W.M. Höppener, J. Zandberg, C.J.M. Lips, H.S. Jansz, A second human calcitonin/CGRP gene. FEBS Lett. (1985).  https://doi.org/10.1016/0014-5793(85)80820-6 CrossRefGoogle Scholar
  10. 10.
    J.W. Hoppener, P.H. Steenbergh, J. Zandberg, A.H. Geurts van Kessel, S.B. Baylin, B.D. Nelkin, H.S. Jansz, C.J. Lips, The second human calcitonin/CGRP gene is located on chromosome 11. Hum. Genet. 70, 259–263 (1985)PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    J.W. Hoppener, P.H. Steenbergh, J. Zandberg, E. Bakker, P.L. Pearson, A.H. Geurts van Kessel, H.S. Jansz, C.J. Lips, Localization of the polymorphic human calcitonin gene on chromosome 11. Hum. Genet. 66, 309–312 (1984)PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    D. Van Rossum, U.K. Hanisch, R. Quirion, Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci. Biobehav. Rev. 21, 649–678 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    D.R. Poyner, P.M. Sexton, I. Marshall, D.M. Smith, R. Quirion,W. Born, R. Muff, J.A. Fischer, S.M. Foord, International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol. Rev. (2002).  https://doi.org/10.1124/pr.54.2.233 PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    L.M. McLatchie, N.J. Fraser, M.J. Main, A. Wise, J. Brown, N. Thompson, R. Solari, M.G. Lee, S.M. Foord, RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 93, 333–339 (1998)CrossRefGoogle Scholar
  15. 15.
    S.P. Alexander, A.P. Davenport, E. Kelly, N. Marrion, J.A. Peters, H.E. Benson, E. Faccenda, A.J. Pawson, J.L. Sharman, C. Southan, J.A. Davies, The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. Br. J. Pharmacol. (2015).  https://doi.org/10.1111/bph.13348 PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    C. Juaneda, Y. Dumont, R. Quirion, The molecular pharmacology of CGRP and related peptide receptor subtypes. Trends Pharmacol. Sci. (2000).  https://doi.org/10.1016/S0165-6147(00)01555-8 PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Amgen Inc. Erenumab (Aimovig™): US prescribing information. https://www.accessdata.fda.gov/drugsatfdadocs/label/2018/761077s000lbl.pdf. (2018). Accessed 11 June 2018
  18. 18.
    A. Markham, Erenumab: first global approval. Drugs (2018).  https://doi.org/10.1007/s40265-018-0944-0 PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    ClinicalTrials.gov., Telcagepant for prevention of menstrually related migraine in female participants with episodic migraine (MK-0974-065). https://clinicaltrials.gov/ct2/show/NCT01125774?term=telcagepant&rank=1. (2018). Accessed 11 June 2018
  20. 20.
    M. Deen, E. Correnti, K. Kamm, T. Kelderman, L. Papetti, E. Rubio-Beltran, S. Vigneri, L. Edvinsson, A. Maassen Van Den Brink, Blocking CGRP in migraine patients - a review of pros and cons. J. Headache Pain (2017).  https://doi.org/10.1186/s10194-017-0807-1
  21. 21.
    T.W. Ho, A.P. Ho, Y.J. Ge, C. Assaid, R. Gottwald, E.A. MacGregor, L.K. Mannix, W.P.J. van Oosterhout, J. Koppenhaver, C. Lines, M.D. Ferrari, D. Michelson, Randomized controlled trial of the CGRP receptor antagonist telcagepant for prevention of headache in women with perimenstrual migraine. Cephalalgia (2016).  https://doi.org/10.1177/0333102415584308 PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    D.J. Hewitt, S.K. Aurora, D.W. Dodick, P.J. Goadsby, Y.J. Ge, R. Bachman, D. Taraborelli, X. Fan, C. Assaid, C. Lines, T.W. Ho, Randomized controlled trial of the CGRP receptor antagonist MK-3207 in the acute treatment of migraine. Cephalalgia (2011).  https://doi.org/10.1177/0333102411398399 PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    H.-C. Diener, P. Barbanti, C. Dahlof, U. Reuter, J. Habeck, J. Podhorna, BI44370 TA, an oral CGRP antagonist for the treatment of acute migraine attacks: results from a phase II study. Cephalalgia (2011).  https://doi.org/10.1177/0333102410388435 PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    L. Kruger, P.W. Mantyh, C. Sternini, N.C. Brecha, C.R. Mantyh, Calcitonin gene-related peptide (CGRP) in the rat central nervous system: patterns of immunoreactivity and receptor binding sites. Brain Res. (1988).  https://doi.org/10.1016/0006-8993(88)90395-2 PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    P.M. Sexton, J.S. McKenzie, R.T. Mason, J.M. Moseley, T.J. Martin, F.A. Mendelsohn, Localization of binding sites for calcitonin gene-related peptide in rat brain by in vitro autoradiography. Neuroscience 19, 1235–1245 (1986)PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    L. Edvinsson, E. Nilsson, I. Jansen-Olesen, Inhibitory effect of BIBN4096BS, CGRP(8-37), a CGRP antibody and an RNA-Spiegelmer on CGRP induced vasodilatation in the perfused and non-perfused rat middle cerebral artery. Br. J. Pharmacol. (2007).  https://doi.org/10.1038/sj.bjp.0707134 CrossRefGoogle Scholar
  27. 27.
    D.L. Hay, M.L. Garelja, D.R. Poyner, C.S. Walker, Update on the pharmacology of calcitonin/CGRP family of peptides: IUPHAR Review 25. Br. J. Pharmacol. (2018).  https://doi.org/10.1111/bph.14075 PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    H. Yoshizaki, M. Takamiya, T. Okada, Characterization of picomolar affinity binding sites for [125I]-human calcitonin gene-related peptide in rat brain and heart. Biochem. Biophys. Res. Commun. 146, 443–451 (1987)PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    T. Dennis, A. Fournier, A. Cadieux, F. Pomerleau, F.B. Jolicoeur, S. St Pierre, R. Quirion, hCGRP8-37, a calcitonin gene-related peptide antagonist revealing calcitonin gene-related peptide receptor heterogeneity in brain and periphery. J. Pharmacol. Exp. Ther. 254, 123–128 (1990)Google Scholar
  30. 30.
    H. Nakamuta, Y. Fukuda, M. Koida, N. Fujii, A. Otaka, S. Funakoskhi, H. Yajima, N. Mitsuyasu, R.C. Orlowshi, Binding sites of calcitonin gene-related peptide (CGRP): abundant occurrence in visceral organs. Jpn. J. Pharmacol. 42, 175–180 (1986)PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    M. Roa, J.P. Changeux, Characterization and developmental evolution of a high-affinity binding site for calcitonin gene-related peptide on chick skeletal muscle membrane. Neuroscience (1991).  https://doi.org/10.1016/0306-4522(91)90349-S PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    C.E. Hill, D.J. Gould, J. Strigas, E. Burcher, M. Vidovic, Sensory nerves play an efferent role in the function of the arterioles, but not the dilator muscle, of the rat iris. J. Auton. Nerv. Syst. 58, 89–100 (1996)PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    J.C.W. Mak, P.J. Barnes, Autoradiographic localization of calcitonin gene-related peptide (CGRP) binding sites in human and guinea pig lung. Peptides 9, 957–963 (1988)PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    J.P. McGillis, S. Humphreys, V. Rangnekar, J. Ciallella, Modulation of B lymphocyte differentiation by calcitonin gene-related peptide (CGRP). I. Characterization of high-affinity CGRP receptors on murine 70Z/3 cells. Cell. Immunol. 150, 391–404 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    A.M. Salmon, M.I. Damaj, L.M. Marubio, M.P. Epping-Jordan, E. Merlo-Pich, J.P. Changeux, Altered neuroadaptation in opiate dependence and neurogenic inflammatory nociception in alpha CGRP-deficient mice. Nat. Neurosci. (2001).  https://doi.org/10.1038/86001 PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    K. Takami, Y. Kawai, S. Uchida, M. Tohyama, Y. Shiotani, H. Yoshida, P.C. Emson, S. Girgis, C.J. Hillyard, I. MacIntyre, Effect of calcitonin gene-related peptide on contraction of striated muscle in the mouse. Neurosci. Lett. 60, 227–230 (1985)PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    S. Uchida, H. Yamamoto, S. Lio, N. Matsumoto, X.B. Wang, N. Yonehara, Y. Imai, R. Inoki, H. Yoshida, Release of calcitonin gene-related peptide-like immunoreactive substance from neuromuscular junction by nerve excitation and its action on striated muscle. J. Neurochem. 54, 1000–1003 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    C. Gennari, J.A. Fischer, Cardiovascular action of calcitonin gene-related peptide in humans. Calcif. Tissue Int. (1985).  https://doi.org/10.1007/BF02554909 PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    M.D. Harzenetter, A.R. Novotny, P. Gais, C.A. Molina, F. Altmayr, B. Holzmann, Negative regulation of TLR responses by the neuropeptide CGRP is mediated by the transcriptional repressor ICER. J. Immunol. (2007).  https://doi.org/10.4049/jimmunol.179.1.607 PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    E. Tanaka, S. Uchiyama, S. Nakano, Effects of calcitonin gene-related peptide and vasoactive intestinal peptide on nicotine-induced sweating in man. J. Auton. Nerv. Syst. 30, 265–268 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    J. Machado, L.H. Manfredi, W.A. Silveira, D.A.P. Goncalves, D. Lustrino, N.M. Zanon, I.C. Kettelhut, L.C. Navegantes, Calcitonin gene-related peptide inhibits autophagic-lysosomal proteolysis through cAMP/PKA signaling in rat skeletal muscles. Int. J. Biochem. Cell Biol. (2016).  https://doi.org/10.1016/j.biocel.2015.12.011 CrossRefGoogle Scholar
  42. 42.
    C.S. Walker, D.L. Hay, S.M. Fitzpatrick, G.J.S. Cooper, K.M. Loomes, alpha-Calcitonin gene related peptide (alpha-CGRP) mediated lipid mobilization in 3T3-L1 adipocytes. Peptides. (2014).  https://doi.org/10.1016/j.peptides.2014.05.011 PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    T. Schinke, S. Liese, M. Priemel, M. Haberland, A.F. Schilling, P. Catala-Lehnen, D. Blicharski, J.M. Rueger, R.F. Gagel, R.B. Emeson, M. Amling, Decreased bone formation and osteopenia in mice lacking alpha-calcitonin gene-related peptide. J. Bone Miner. Res. (2004).  https://doi.org/10.1359/JBMR.040915 PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    N. Takahashi, Y. Matsuda, K. Sato, P.R. de Jong, S. Bertin, K. Tabeta, K. Yamazaki, Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP. Sci. Rep. (2016).  https://doi.org/10.1038/srep29294
  45. 45.
    S.D. Brain, T.J. Williams, J.R. Tippins, H.R. Morris, I. MacIntyre, Calcitonin gene-related peptide is a potent vasodilator. Nature (1985).  https://doi.org/10.1038/313054a0 PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    S.D. Brain, Vascular actions of calcitonin gene-related peptide and adrenomedullin. Physiol. Rev. (2004).  https://doi.org/10.1152/physrev.00037.2003 PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    R. Uddman, L. Edvinsson, E. Ekblad, R. Hakanson, F. Sundler, Calcitonin gene-related peptide (CGRP): perivascular distribution and vasodilatory effects. Regul. Pept. 15, 1–23 (1986)PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    K. Kumazawa, G. Sobue, T. Mitsuma, T. Ogawa, Modulatory effects of calcitonin gene-related peptide and substance P on human cholinergic sweat secretion. Clin. Auton. Res. (1994).  https://doi.org/10.1007/BF01821532 PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    T. Schlereth, J.O. Dittmar, B. Seewald, F. Birklein, Peripheral amplification of sweating – a role for calcitonin gene-related peptide. J. Physiol. (2006).  https://doi.org/10.1113/jphysiol.2006.116111 PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    T. Hasegawa, K. Yokotani, Y. Okuma, M. Manabe, M. Hirakawa, Y. Osumi, Microinjection of ƒα-calcitonin gene-related peptide into the hypothalamus activates sympathetic outflow in rats. J. Pharmacol. 61, 325–332 (1993)Google Scholar
  51. 51.
    Research on the menopause in the 1990s. Report of a WHO Scientific Group (WHO, Switzerland, 1996)Google Scholar
  52. 52.
    Y. Handelsman, J.I. Mechanick, S. Dagogo-Jack, J.A. Davidson, AACE Guidelines. Endocr. Pract. (2011).  https://doi.org/10.4158/EP.17.S2.1 PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    P.K. Dalal, M. Agarwal, Postmenopausal syndrome. Indian J. Psychiatry. (2015).  https://doi.org/10.4103/0019-5545.161483 CrossRefGoogle Scholar
  54. 54.
    J.T. Bromberger, K.A. Matthews, L.H. Kuller, R.R. Wing, E.N. Meilahn, P. Plantinga, Prospective study of the determinants of age at menopause. Am. J. Epidemiol. (1997).  https://doi.org/10.1093/oxfordjournals.aje.a009083 PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    T. Okeke, U. Anyaehie, C. Ezenyeaku, Premature menopause. Ann. Med. Health Sci. Res. (2013).  https://doi.org/10.4103/2141-9248.109458 PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    B.K. Jacobsen, I. Heuch, G. Kvale, Age at natural menopause and all-cause mortality: a 37-year follow-up of 19,731 Norwegian women. Am. J. Epidemiol. (2003).  https://doi.org/10.1093/aje/kwg066 PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    R. Cui, H. Iso, H. Toyoshima, C. Date, A. Yamamoto, S. Kikuchi, T. Kondo, Y. Watanabe, A. Koizumi, Y. Inaba, A. Tamakoshi, Relationships of age at menarche and menopause, and reproductive year with mortality from cardiovascular disease in Japanese postmenopausal women: the JACC study. J. Epidemiol. 16, 177–184 (2006)PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    J. Kozakowski, M. Gietka-Czernel, D. Leszczynska, A. Majos, Obesity in menopause - our negligence or an unfortunate inevitability?. Menopause Rev. (2017).  https://doi.org/10.5114/pm.2017.68594 CrossRefGoogle Scholar
  59. 59.
    R. Bijelic, S. Milicevic, J. Balaban, Risk factors for osteoporosis in postmenopausal women. Med. Arch. (2017).  https://doi.org/10.5455/medarh.2017.71.25-28 PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    B.E. Bernstein, T.S. Mikkelsen, X. Xie, M. Kamal, D.J. Huebert, J. Cuff, B. Fry, A. Meissner, M. Wernig, M., K. Plath, R. Jaenisch, A. Wagschal, R. Feil, S.L. Schreiber, E.S. Lander, A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell (2006).  https://doi.org/10.1016/j.cell.2006.02.041 CrossRefGoogle Scholar
  61. 61.
    D. Kritz-Silverstein, E. Barrett-Connor, Early menopause, number of reproductive years, and bone mineral density in postmenopausal women. Am. J. Public Health 83, 983–988 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    ACOG Practice Bulletin No. 141: management of menopausal symptoms. Obstet. Gynecol. (2014).  https://doi.org/10.1097/01.AOG.0000441353.20693.78
  63. 63.
    I. Goranitis, L. Bellanca, A.J. Daley, A. Thomas, H. Stokes-Lampard, A.K. Roalfe, S. Jowett, Aerobic exercise for vasomotor menopausal symptoms: a cost-utility analysis based on the Active Women trial. PLoS One (2017).  https://doi.org/10.1371/journal.pone.0184328 PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    R.W. Rebar, I.B. Spitzer, The physiology and measurement of hot flushes. Am. J. Obstet. Gynecol. (1987).  https://doi.org/10.1016/0002-9378(87)90165-7 PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    C.M. Estrada, V. Ghisays, E.T. Nguyen, J.L. Caldwell, J. Streicher, M.B. Solomon, Estrogen signaling in the medial amygdala decreases emotional stress responses and obesity in ovariectomized rats. Horm. Behav. (2018).  https://doi.org/10.1016/j.yhbeh.2017.12.002 PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    R.R. Freedman, Imaging and menopausal hot flashes. Temperature (Austin.) (2016).  https://doi.org/10.1080/23328940.2016.1208318 CrossRefGoogle Scholar
  67. 67.
    P.K.H. Morrow, D.N. Mattair, G.N. Hortobagyi, Hot flashes: a review of pathophysiology and treatment modalities. Oncologist (2011).  https://doi.org/10.1634/theoncologist.2011-0174 PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    A.A. Krull, S.A. Larsen, D.K. Clifton, G. Neal-Perry, R.A. Steiner, A. comprehensive method to quantify adaptations by male and female mice with hot flashes induced by the neurokinin B receptor agonist senktide. Endocrinology (2017).  https://doi.org/10.1210/en.2017-00142 PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    G.W. Molnar, Body temperatures during menopausal hot flashes. J. Appl. Physiol. (1975).  https://doi.org/10.1152/jappl.1975.38.3.499 PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    S. Valdemarsson, L. Edvinsson, P. Hedner, R. Ekman, Hormonal influence on calcitonin gene-related peptide in man: effects of sex difference and contraceptive pills. Scand. J. Clin. Lab. Invest. (1990).  https://doi.org/10.3109/00365519009091595 PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    A. Valentini, F. Petraglia, D. De Vita, C. Nappi, A. Margutti, E.C. Degli Uberti, A.R. Genazzani, Changes of plasma calcitonin gene-related peptide levels in postmenopausal women. Am. J. Obstet. Gynecol. (1996).  https://doi.org/10.1053/ob.1996.v175.a74287 PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Y.A. Wyon, A.C. Spetz, G.E. Theodorsson, M.L. Hammar, Concentrations of calcitonin gene-related peptide and neuropeptide Y in plasma increase during flushes in postmenopausal women. Menopause (2000).  https://doi.org/10.1097/00042192-200007010-00005 PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    J.T. Chen, M. Shiraki, Menopausal hot flash and calcitonin gene-related peptide; effect of Keishi-bukuryo-gan, a kampo medicine, related to plasma calciotonin gene-related peptide level. Maturitas (2003).  https://doi.org/10.1016/S0378-5122(03)00128-2 PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    P. Gupta, A. Harte, D.W. Sturdee, A. Sharma, A.H. Barnett, S. Kumar, P.G. McTernan, Effects of menopausal status on circulating calcitonin gene-related peptide and adipokines: implications for insulin resistance and cardiovascular risks. Climacteric (2008).  https://doi.org/10.1080/13697130802378493 PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Y. Wyon, J. Frisk, T. Lundeberg, E. Theodorsson, M. Hammar, Postmenopausal women with vasomotor symptoms have increased urinary excretion of calcitonin gene-related peptide. Maturitas 30, 289–294 (1998)PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    A.C. Spetz, B. Pettersson, E. Varenhorst, E. Theodorsson, L.H. Thorell, M Hammar, Momentary increase in plasma calcitonin gene-related peptide is involved in hot flashes in men treated with castration for carcinoma of the prostate. J Urol. (2001). http://www.ncbi.nlm.nih.gov/pubmed/11586209
  77. 77.
    A.C. Holm, L.H. Thorell, E. Theodorsson, M. Hammar, Hot flushes in healthy aging men differ from those in men with prostate cancer and in menopausal women. Gynecol. Endocrinol. (2012).  https://doi.org/10.3109/09513590.2011.588744 CrossRefGoogle Scholar
  78. 78.
    P.R.R. Gangula, M. Chauhan, L. Reed, C. Yallampalli, Age-related changes in dorsal root ganglia, circulating and vascular calcitonin gene-related peptide (CGRP) concentrations in female rats: effect of female sex steroid hormones, Neurosci Lett. (2009).  https://doi.org/10.1016/j.neulet.2009.02.068 PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    M. Noguchi, Y. Ikarashi, M. Yuzurihara, K. Mizoguchi, K. Kurauchi, J. Chen, A. Ishige, Up-regulation of calcitonin gene-related peptide receptors underlying elevation of skin temperature in ovariectomized rats. J. Endocrinol. 175, 177–183 (2002)PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    A. Spinetti, A. Margutti, S. Bertolini, F. Bernardi, G. BiFulco, E.C. Degli Uberti, F. Petraglia, A.R. Genazzani, Hormonal replacement therapy affects calcitonin gene-related peptide and atrial natriuretic peptide secretion in postmenopausal women. Eur. J. Endocrinol. 137, 664–669 (1997)PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    P.R.R. Gangula, S.J. Wimalawansa, C. Yallampalli, Pregnancy and sex steroid hormones enhance circulating calcitonin gene-related peptide concentrations in rats. Hum. Reprod. (2000). http://www.ncbi.nlm.nih.gov/pubmed/10739848
  82. 82.
    M. Noguchi, Y. Ikarashi, M. Yuzurihara, Y. Kase, S. Takeda, M. Aburada, Effects of 17 beta-estradiol and the Japanese herbal medicine Keishi-bukuryo-gan on the release and synthesis of calcitonin gene-related peptide in ovariectomized rats. J. Pharmacol. Sci. (2003).  https://doi.org/10.1254/jphs.93.80 PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    C.N. Mowa, S. Usip, J. Collins, M. Storey-Workley, K.M. Hargreaves, R.E. Papka, The effects of pregnancy and estrogen on the expression of calcitonin gene-related peptide (CGRP) in the uterine cervix, dorsal root ganglia and spinal cord. Peptides (2003).  https://doi.org/10.1016/j.peptides.2003.07.009 PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    G. Gon, A. Giaid, J.H. Steel, D.J.O. Halloran, S.V.A.N. Noorden, M.A. Ghatei, P.M. Jones, G. Susan, S.R. Bloom, J.M. Polak, Localization of immunoreactivity for calcitonin gene-related peptide in the rat anterior pituitary during ontogeny and gonadal steroid manipulations and detection of its messenger ribonucleid acid. Endocrinology 127, 2618–2629 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Y. Lamari, M. Ghorbel, J.M. Garel, Effects of 17 beta-estradiol on calcitonin-gene-related peptide secretions and contents in a murine medullary thyroid carcinoma C-cell line (CA-77). Reprod. Nutr. Dev. 35, 655–661 (1995)PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    V. Pota, V. Quagliariello, E. Armenia, C. Aurilio, M.B. Passavanti, P. Sansone, M. Iannotti, M. Catauro, S. Coaccioli, M. Barbarisi, M.C. Pace, CGRP and visceral pain: the role of sex hormones in in vitro experiment. J. Cell. Biochem. (2017).  https://doi.org/10.1002/jcb.25680 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    M. Aggarwal, V. Puri, S. Puri, Effects of estrogen on the serotonergic system and calcitonin generelated peptide in trigeminal ganglia of rats. Ann. Neurosci. (2012).  https://doi.org/10.5214/ans.0972.7531.190403
  88. 88.
    R.T. Dos Santos Pereira, C.S. Porto, F.M.F. Abdalla, Ovariectomy and 17beta-estradiol replacement play a role on the expression of Endonuclease-G and phosphorylated cyclic AMP response element-binding (CREB) protein in hippocampus. Mol. Cell. Endocrinol. (2014).  https://doi.org/10.1016/j.mce.2013.09.037 PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    L. Yang, Q.-G. Zhang, C. Zhou, F. Yang, Y. Zhang, R. Wang, D.W. Brann, Extranuclear estrogen receptors mediate the neuroprotective effects of estrogen in the rat hippocampus. PLoS One (2010).  https://doi.org/10.1371/journal.pone.0009851 PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    S.M. Aronica, W.L. Kraus, B.S. Katzenellenbogen, Estrogen action via the cAMP signaling pathway: stimulation of adenylate cyclase and cAMP-regulated gene transcription. Proc. Natl. Acad. Sci. USA 91, 8517–8521 (1994)PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    T.D. Purves-Tyson, J.R. Keast, Rapid actions of estradiol on cyclic amp response-element binding protein phosphorylation in dorsal root ganglion neurons. Neuroscience (2004).  https://doi.org/10.1016/j.neuroscience.2004.08.019 PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    M. Genua, G. Pandini, D. Sisci, G. Castoria, M. Maggiolini, R. Vigneri, A. Belfiore, Role of cyclic AMP response element-binding protein in insulin-like growth factor-i receptor up-regulation by sex steroids in prostate cancer cells. Cancer Res. (2009).  https://doi.org/10.1158/0008-5472.CAN-09-0088 PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    K. Freeland, Y.Z. Liu, D.S. Latchman, Distinct signalling pathways mediate the cAMP response element (CRE)-dependent activation of the calcitonin gene-related peptide gene promoter by cAMP and nerve growth factor. Biochem. J. 345(Pt 2), 233–238 (2000)PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    C.S. Walker, X. Li, L. Whiting, S. Glyn-Jones, S. Zhang, A.J. Hickey, M.A. Sewell, K. Ruggiero, A.R.J.Phillips, E.W. Kraegen, D.L. Hay, G.J.S.., Cooper, K.M. Loomes, Mice lacking the neuropeptide alpha-calcitonin gene-related peptide are protected against diet-induced obesity. Endocrinology. (2010).  https://doi.org/10.1210/en.2010-0284 PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    T. Kobayashi, O. Ushijima, J.T. Chen, M. Shiraki, T. Ohta, M. Kiyoki, Basal tail skin temperature elevation and augmented response to calcitonin gene-related peptide in ovariectomized rats. J. Endocrinol. (1995).  https://doi.org/10.1677/joe.0.1460431 PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    M. Noguchi, Y. Ikarashi, M. Yuzurihara, Y. Kase, S. Takeda, M. Aburada, Significance of measured elevation of skin temperature induced by calcitonin gene-related peptide in anaesthetized rats. J. Pharm. Pharmacol. (2003).  https://doi.org/10.1211/0022357022142 PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    M. Noguchi, M. Yuzurihara, Y. Ikarashi, Effects of the vasoactive neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal polypeptide on skin temperature in ovariectomized rats. Neuropeptides (2002).  https://doi.org/10.1016/S0143-4179(02)00090-2 PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    M. Noguchi, Y. Ikarashi, M. Yuzurihara, Y. Kase, K. Watanabe, G.A. Plotnikoff, S. Takeda, M. Aburada, Skin temperature rise induced by calcitonin gene-related peptide in gonadotropin-releasing hormone analogue-treated female rats and alleviation by Keishi-bukuryo-gan, a Japanese herbal medicine. Life Sci. (2005).  https://doi.org/10.1016/j.lfs.2004.09.032 PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    M. Yuzurihara, Y. Ikarashi, M. Noguchi, Y. Kase, S. Takeda, M. Aburada, Prevention by 17β-estradiol and progesterone of calcitonin gene-related peptide-induced elevation of skin temperature in castrated male rats. Urology (2004).  https://doi.org/10.1016/j.urology.2004.06.013 PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    P. Holzer, Peptidergic sensory neurons in the control of vascular functions: mechanisms and significance in the cutaneous and splanchnic vascular beds, Rev. Physiol. Biochem. Pharmacol. (1992).  https://doi.org/10.1007/BFb0033194
  101. 101.
    D. Roosterman, T. Goerge, S.W. Schneider, N.W. Bunnett, M. Steinhoff, Neuronal control of skin function: the skin as a neuroimmunoendocrine organ. Physiol. Rev. (2006).  https://doi.org/10.1152/physrev.00026.2005 PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    S.R. Hughes, S.D. Brain, A calcitonin gene-related peptide (CGRP) antagonist (CGRP8-37) inhibits microvascular responses induced by CGRP and capsaicin in skin. Br. J. Pharmacol. 104, 738–742 (1991)PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    K.J. Escott, S.D. Brain, Effect of a calcitonin gene-related peptide antagonist (CGRP8-37) on skin vasodilatation and oedema induced by stimulation of the rat saphenous nerve. Br. J. Pharmacol. 110, 772–776 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    K.J. Escott, D.T. Beattie, H.E. Connor, S.D. Brain, Trigeminal ganglion stimulation increases facial skin blood flow in the rat: a major role for calcitonin gene-related peptide. Brain Res. 669, 93–99 (1995)PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    C.A. Salvatore, E.L. Moore, A. Calamari, J.J. Cook, M.S. Michener, S. O’Malley, P.J. Miller, C. Sur, D.L.J. Williams, Z. Zeng, A. Danziger, J.J. Lynch, C.P. Regan, J.F. Fay, Y.S. Tang, C.-C. Li, N.T. Pudvah, R.B. White, I.M. Bell, S.N. Gallicchio, S. L. Graham, H.G. Selnick, J.P. Vacca, S.A. Kane, Pharmacological properties of MK-3207, a potent and orally active calcitonin gene-related peptide receptor antagonist. J. Pharmacol. Exp. Ther. (2010).  https://doi.org/10.1124/jpet.109.163816 PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    S.R. Sinclair, S. A. Kane, B.J. Van der Schueren, A. Xiao, K.J. Willson, J. Boyle, I. de Lepeleire, Y. Xu, L. Hickey, W.S. Denney, C.-C. Li, J. Palcza, F.H.M. Vanmolkot, M. Depre, A. Van Hecken, M.G. Murphy, T.W. Ho, J.N. de Hoon, Inhibition of capsaicin-induced increase in dermal blood flow by the oral CGRP receptor antagonist, telcagepant (MK-0974). Br. J. Clin. Pharmacol. (2010).  https://doi.org/10.1111/j.1365-2125.2009.03543.x PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    C.-C. Li, S. Vermeersch, W.S. Denney, W. P. Kennedy, J. Palcza, A. Gipson, T.H. Han, R. Blanchard, I. De Lepeleire, M. Depre, M.G. Murphy, K. Van Dyck, J.N. de Hoon, JCharacterizing the PK/PD relationship for inhibition of capsaicin-induced dermal vasodilatation by MK-3207, an oral calcitonin gene related peptide receptor antagonist. Br. J. Clin. Pharmacol. (2015).  https://doi.org/10.1111/bcp.12547 PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    T. Vu, P. Ma, J.S. Chen, J. de Hoon, A. Van Hecken, L. Yan, L.S. Wu, L. Hamilton, G. Vargas, Pharmacokinetic-pharmacodynamic relationship of erenumab (AMG 334) and capsaicin-induced dermal blood flow in healthy and migraine subjects. Pharm. Res. (2017).  https://doi.org/10.1007/s11095-017-2183-6 PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    B.J. Van der Schueren, A. Rogiers, F.H. Vanmolkot, A. Van Hecken, M. Depre, S.A. Kane, I. De Lepeleire, S.R. Sinclair, J.N. de Hoon, Calcitonin gene-related peptide8-37 antagonizes capsaicin-induced vasodilation in the skin: evaluation of a human in vivo pharmacodynamic model. J. Pharmacol. Exp. Ther. (2008).  https://doi.org/10.1124/jpet.107.133868 PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    H. Minato, A. Ikeno, N. Watanabe, J.Tsuji, Effect of OS-0689, a novel SERM, on periarterial nerve function in tail arteries of ovariectomized rats. Maturitas (2005).  https://doi.org/10.1016/j.maturitas.2004.11.003 PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    S.P. Han, L. Naes, T.C. Westfall, Inhibition of periarterial nerve stimulation-induced vasodilation of the mesenteric arterial bed by CGRP (8-37) and CGRP receptor desensitization. Biochem. Biophys. Res. Commun. 168, 786–791 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Y. Oh-hashi, T. Shindo, Y. Kurihara, T. Imai, Y. Wang, H. Morita, Y. Imai, Y. Kayaba, H. Nishimatsu, Y. Suematsu, Y. Hirata, Y. Yazaki, R. Nagai, T. Kuwaki, H. Kurihara, Elevated sympathetic nervous activity in mice deficient in alphaCGRP. Circ. Res. (2001).  https://doi.org/10.1161/hh2301.100812 PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    P.R. Gangula, H. Zhao, S.C. Supowit, S.J. Wimalawansa, D.J. Dipette, K.N. Westlund, R.F. Gagel, C. Yallampalli, Increased blood pressure in alpha-calcitonin gene-related peptide/calcitonin gene knockout mice.Hypertension 35, 470–475 (2000).PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    J. Jernbeck, M. Edner, C.J. Dalsgaard, B. Pernow, The effect of calcitonin gene-related peptide (CGRP) on human forearm blood flow. Clin. Physiol. 10, 335–343 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    K. Jager, R. Muench, H. Seifert, C. Beglinger, A. Bollinger, J.A. Fischer, Calcitonin gene-related peptide (CGRP) causes redistribution of blood flow in humans. Eur. J. Clin. Pharmacol. 39, 491–494 (1990)PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    S.C. Landis, J.R. Fredieu, Coexistence of calcitonin gene-related peptide and vasoactive intestinal peptide in cholinergic sympathetic innervation of rat sweat glands. Brain Res. 377, 177–181 (1986)PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    N. Charkoudian, E.C.J. Hart, J.N. Barnes, M.J. Joyner, Autonomic control of body temperature and blood pressure: influences of female sex hormones. Clin. Auton. Res. (2017).  https://doi.org/10.1007/s10286-017-0420-z PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    C.J. Smith, J.M. Johnson, Responses to hyperthermia. Optimizing heat dissipation by convection and evaporation: neural control of skin blood flow and sweating in humans. Auton. Neurosci. (2016).  https://doi.org/10.1016/j.autneu.2016.01.002 PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    R.R. Freedman, W. Krell, Reduced thermoregulatory null zone in postmenopausal women with hot flashes. Am. J. Obstet. Gynecol. (1999).  https://doi.org/10.1016/S0002-9378(99)70437-0 PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    A.E. Herbison, Identification of a sexually dimorphic neural population immunoreactive for calcitonin gene-related peptide (CGRP) in the rat medial preoptic area. Brain Res. 591, 289–295 (1992)PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    A.E. Herbison, S. Dye, Perinatal and adult factors responsible for the sexually dimorphic calcitonin gene-related peptide-containing cell population in the rat preoptic area. Neuroscience (1993).  https://doi.org/10.1016/0306-4522(93)90590-C PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    D.C. Braasch, E.M. Deegan, E.R. Grimm, J.D. Griffin, Calcitonin gene-related peptide alters the firing rates of hypothalamic temperature sensitive and insensitive neurons. BMC Neurosci. (2008).  https://doi.org/10.1186/1471-2202-9-64 PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    A. Kobayashi, T. Osaka, Y. Namba, S. Inoue, S. Kimura, CGRP microinjection into the ventromedial or dorsomedial hypothalamic nucleus activates heat production. Brain Res. (1999).  https://doi.org/10.1016/S0006-8993(99)01333-5 PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    R.R. Freedman, Menopausal hot flashes: mechanisms, endocrinology, treatment. J. Steroid Biochem. Mol. Biol. (2014).  https://doi.org/10.1016/j.jsbmb.2013.08.010 PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    C.U. Pae, M.H. Park, D.M. Marks, C. Han, A.A. Patkar, P.S. Masand, Desvenlafaxine, a serotonin-norepinephrine uptake inhibitor for major depressive disorder, neuropathic pain and the vasomotor symptoms associated with menopause. Curr. Opin. Investig. Drugs 10, 75–90 (2009)PubMedPubMedCentralGoogle Scholar
  126. 126.
    S.F. Morrison, Central control of body temperature. F1000Res (2016).  https://doi.org/10.12688/f1000research.7958.1 CrossRefGoogle Scholar
  127. 127.
    Y. Hu, C. Converse, M.C. Lyons, W.H. Hsu, Neural control of sweat secretion: a review. Br. J. Dermatol. (2017).  https://doi.org/10.1111/bjd.15808 PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    K.F. Malik, H.H. Feder, J.I. Morrell, Estrogen receptor immunostaining in the preoptic area and medial basal hypothalamus of estradiol benzoate- and prazosin-treated female guinea-pigs. J. Neuroendocrinol. 5, 297–306 (1993)PubMedCrossRefPubMedCentralGoogle Scholar
  129. 129.
    J.A. Butler, I. Kallo, M. Sjoberg, C.W. Coen, Evidence for extensive distribution of oestrogen receptor alpha-immunoreactivity in the cerebral cortex of adult rats. J. Neuroendocrinol. 11, 325–329 (1999)PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    R.R. Freedman, M.D. Benton, R.J. Genik 2nd, F.X. Graydon, Cortical activation during menopausal hot flashes. Fertil. Steril. (2006).  https://doi.org/10.1016/j.fertnstert.2005.08.026 PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    D.F. Archer, D.W. Sturdee, R. Baber, T.J. de Villiers, A. Pines, R.R. Freedman, A. Gompel, M. Hickey, M.S. Hunter, R.A. Lobo, M.A. Lumsden, A.H. MacLennan, P. Maki, S. Palacios, D. Shah, P. Villaseca, M. Warren, Menopausal hot flushes and night sweats: where are we now?. Climacteric (2011).  https://doi.org/10.3109/13697137.2011.608596 PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    O.H. Franco, T. Muka, V. Colpani, S. Kunutsor, S. Chowdhury, R. Chowdhury, M. Kavousi, Vasomotor symptoms in women and cardiovascular risk markers: systematic review and meta-analysis. Maturitas (2015).  https://doi.org/10.1016/j.maturitas.2015.04.016 PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    X. Wu, J.-T.Zhang, J. Liu, S.Yang, T. Chen, J.-G. Chen, F. Wang, Calcitonin gene-related peptide erases the fear memory and facilitates long-term potentiation in the central nucleus of the amygdala in rats. J. Neurochem. (2015).  https://doi.org/10.1111/jnc.13246 PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    J.S. Han, H. Adwanikar, Z. Li, G. Ji, V. Neugebauer, Facilitation of synaptic transmission and pain responses by CGRP in the amygdala of normal rats. Mol. Pain. (2010).  https://doi.org/10.1186/1744-8069-6-10 CrossRefGoogle Scholar
  135. 135.
    A.Y. Deutch, R.H. Roth, Calcitonin gene-related peptide in the ventral tegmental area: selective modulation of prefrontal cortical dopamine metabolism. Neurosci. Lett. 74, 169–174 (1987)PubMedCrossRefPubMedCentralGoogle Scholar
  136. 136.
    A.A. Mathe, P. Hertel, G.G. Nomikos, S. Gruber, J.M. Mathe, T.H. Svensson, The psychotomimetic drugs D-amphetamine and phencyclidine release calcitonin gene-related peptide in the limbic forebrain of the rat. J. Neurosci. Res. 46, 316–323 (1996)PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Maria Alice Oliveira
    • 1
  • William Gustavo Lima
    • 1
  • Dante Alighieri Schettini
    • 1
  • Cristiane Queixa Tilelli
    • 1
  • Valéria Ernestânia Chaves
    • 1
  1. 1.Laboratory of PhysiologyFederal University of São João del-ReiDivinópolisBrazil

Personalised recommendations