Advertisement

Endocrine

, Volume 63, Issue 1, pp 171–176 | Cite as

Are volume measurements of non-functioning pituitary adenomas reliable?

  • Kristin Astrid Berland ØysteseEmail author
  • Sheren Hisanawi
  • Manuela Zucknick
  • Jens Bollerslev
  • Geir Ringstad
Endocrine Methods and Techniques
  • 47 Downloads

Abstract

Purpose

Precise radiological assessment of tumour volume is important in the follow-up of non-functioning pituitary adenomas (NFPAs). We compared the reliability of two methods for tumour volume measurements in the pre- and postoperative setting.

Methods

We assessed the volume of 22 NFPAs at magnetic resonance imaging (MRI) scans before surgery and the first and third postoperative MRI obtained after submission from hospital. Volumetric assessments were performed both by summation of slices (SOS) and by diameter measures. All volumes were calculated independently by two readers.

Results

The preoperative intra- and inter-rater reliability was good for both the SOS and the diameter method (intraclass correlation coefficient (ICC) 0.996 and 0.990, and ICC: 0.982 and 0.967, respectively). The first postoperative investigation showed poorer intra- and inter-rater reliability for both methods (ICC: 0.872 and 0.791 and ICC: 0.792 and 0.810, respectively). The third postoperative MRI showed good intra-rater reliability (ICC: 0.961 and 0.962, respectively), but poorer inter-rater reliability for both methods (ICC: 0.759 and 0.703, respectively). Volume assessment by SOS presented overall slightly higher reliability than the diametric method. Overall, the reliability between the two methods was good when measured by the same reader (ICC: 0.988, 0.945 and 0.962, for the preoperative, first and third postoperative MRI, respectively).

Conclusion

The preoperative intra- and inter-rater reliabilities were satisfactory for both the SOS and diametric method. Postoperative MRI scans showed poorer reliability, suggesting that measurements at these time points should be interpreted with care. For each MRI scan, reliability between methods was satisfactory when investigated by the same reader.

Keywords

Non-functioning pituitary adenomas Growth Tumour volume Reliability Magnetic resonance imaging 

Notes

Acknowledgements

The study was approved by the regional ethics committee and hospital authority. The work was funded by the South-Eastern Norway Regional Health Authority, Award number 2016026.

Compliance with ethical standards

Conflict of interest

J.B. is a member of the advisory board of Endocrine. The remaining authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all living patients.

References

  1. 1.
    S.L. Asa, Practical pituitary pathology: what does the pathologist need to know? Arch. Pathol. Lab. Med. 132(8), 1231–1240 (2008).  https://doi.org/10.1043/1543-2165(2008)132[1231:pppwdt]2.0.co;2 Google Scholar
  2. 2.
    A. Tjornstrand, K. Gunnarsson, M. Evert, E. Holmberg, O. Ragnarsson, T. Rosen, H. Filipsson Nystrom, The incidence rate of pituitary adenomas in western Sweden for the period 2001-2011. Eur. J. Endocrinol. 171(4), 519–526 (2014).  https://doi.org/10.1530/eje-14-0144 CrossRefGoogle Scholar
  3. 3.
    P.U. Freda, A.M. Beckers, L. Katznelson, M.E. Molitch, V.M. Montori, K.D. Post, M.L. Vance, Pituitary incidentaloma: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 96(4), 894–904 (2011).  https://doi.org/10.1210/jc.2010-1048 CrossRefGoogle Scholar
  4. 4.
    Y. Chen, C.D. Wang, Z.P. Su, Y.X. Chen, L. Cai, Q.C. Zhuge, Z.B. Wu, Natural history of postoperative nonfunctioning pituitary adenomas: a systematic review and meta-analysis. Neuroendocrinology 96(4), 333–342 (2012).  https://doi.org/10.1159/000339823 CrossRefGoogle Scholar
  5. 5.
    C. Cortet-Rudelli, J. F. Bonneville, F. Borson-Chazot, L. Clavier, B. Coche Dequeant, R. Desailloud, D. Maiter, V. Rohmer, J. L. Sadoul, E. Sonnet, P. Toussaint, P. Chanson, Post-surgical management of non-functioning pituitary adenoma. Ann. Endocrinol. (2015).  https://doi.org/10.1016/j.ando.2015.04.003
  6. 6.
    E.A. Eisenhauer, P. Therasse, J. Bogaerts, L.H. Schwartz, D. Sargent, R. Ford, J. Dancey, S. Arbuck, S. Gwyther, M. Mooney, L. Rubinstein, L. Shankar, L. Dodd, R. Kaplan, D. Lacombe, J. Verweij, New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur. J. Cancer 45(2), 228–247 (2009).  https://doi.org/10.1016/j.ejca.2008.10.026 CrossRefGoogle Scholar
  7. 7.
    H.J. Gundersen, T.F. Bendtsen, L. Korbo, N. Marcussen, A. Moller, K. Nielsen, J.R. Nyengaard, B. Pakkenberg, F.B. Sorensen, A. Vesterby et al. Some new, simple and efficient stereological methods and their use in pathological research and diagnosis. APMIS Scand. 96(5), 379–394 (1988)CrossRefGoogle Scholar
  8. 8.
    G. Di Chiro, K.B. Nelson, The volume of the sella turcica. Am. J. Roentgenol. Radium Ther. Nucl. Med. 87, 989–1008 (1962)Google Scholar
  9. 9.
    G.A. Ringstad, K.E. Emblem, D. Holland, A.M. Dale, A. Bjornerud, J.K. Hald, Assessment of pituitary adenoma volumetric change using longitudinal MR image registration. Neuroradiology 54(5), 435–443 (2012).  https://doi.org/10.1007/s00234-011-0894-7 CrossRefGoogle Scholar
  10. 10.
    J.K. Varughese, T. Wentzel-Larsen, F. Vassbotn, G. Moen, M. Lund-Johansen, Analysis of vestibular schwannoma size in multiple dimensions: a comparative cohort study of different measurement techniques. Clinical otolaryngology: official journal of ENT-UK. Off. J. Neth. Soc. Oto-Rhino-Laryngol. Cervico-Facial Surg. 35(2), 97–103 (2010).  https://doi.org/10.1111/j.1749-4486.2010.02099.x Google Scholar
  11. 11.
    S. Bauer, R. Wiest, L.P. Nolte, M. Reyes, A survey of MRI-based medical image analysis for brain tumor studies. Phys. Med. Biol. 58(13), R97–R129 (2013).  https://doi.org/10.1088/0031-9155/58/13/r97 CrossRefGoogle Scholar
  12. 12.
    K.A. Oystese, M. Zucknick, O. Casar-Borota, G. Ringstad, J. Bollerslev, Early postoperative growth in non-functioning pituitary adenomas; a tool to tailor safe follow-up. Endocrine 57(1), 35–45 (2017).  https://doi.org/10.1007/s12020-017-1314-5 CrossRefGoogle Scholar
  13. 13.
    P.E. Shrout, J.L. Fleiss, Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86(2), 420–428 (1979)CrossRefGoogle Scholar
  14. 14.
    K.O. McGraw, S.P. Wong, “Forming inferences about some intraclass correlations coefficients”: correction. Psychol. Methods 1(4), 390–390 (1996).  https://doi.org/10.1037/1082-989X.1.4.390 CrossRefGoogle Scholar
  15. 15.
    T.K. Koo, M.Y. Li, A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J. Chiropr. Med. 15(2), 155–163 (2016).  https://doi.org/10.1016/j.jcm.2016.02.012 CrossRefGoogle Scholar
  16. 16.
    J.M. Bland, D.G. Altman, Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476), 307–310 (1986)CrossRefGoogle Scholar
  17. 17.
    B.M. Davies, E. Carr, C. Soh, K.K. Gnanalingham, Assessing size of pituitary adenomas: a comparison of qualitative and quantitative methods on MR. Acta Neurochir. 158(4), 677–683 (2016).  https://doi.org/10.1007/s00701-015-2699-7 CrossRefGoogle Scholar
  18. 18.
    J. A. Balogun, E. Monsalves, K. Juraschka, K. Parvez, W. Kucharczyk, O. Mete, F. Gentili, G. Zadeh, Null cell adenomas of the pituitary gland: an institutional review of their clinical imaging and behavioral characteristics. Endocrine pathology (2014).  https://doi.org/10.1007/s12022-014-9347-2
  19. 19.
    N. Lenders, S. Ikeuchi, A. W. Russell, K. K. Ho, J. B. Prins, W. J. Inder, Longitudinal evaluation of the natural history of conservatively managed non-functioning pituitary adenomas. Clin Endocrinol (2015).  https://doi.org/10.1111/cen.12879
  20. 20.
    E. Monsalves, S. Larjani, B. Loyola Godoy, K. Juraschka, F. Carvalho, W. Kucharczyk, A. Kulkarni, O. Mete, F. Gentili, S. Ezzat, G. Zadeh, Growth patterns of pituitary adenomas and histopathological correlates. J. Clin. Endocrinol. Metab. 99(4), 1330–1338 (2014).  https://doi.org/10.1210/jc.2013-3054 CrossRefGoogle Scholar
  21. 21.
    J. F. Bonneville, F. Bonneville, E. Barrali, G. Jacquet, F. Cattin, Functional and Morphological Imaging of the Endocrine System. ed. by W. W. De Herder (Springer US, Boston, 2000) pp. 3–33Google Scholar
  22. 22.
    T. Sankar, N.Z. Moore, J. Johnson, L.S. Ashby, A.C. Scheck, W.R. Shapiro, K.A. Smith, R.F. Spetzler, M.C. Preul, Magnetic resonance imaging volumetric assessment of the extent of contrast enhancement and resection in oligodendroglial tumors. J. Neurosurg. 116(6), 1172–1181 (2012).  https://doi.org/10.3171/2012.2.jns102032 CrossRefGoogle Scholar
  23. 23.
    A.G. Sorensen, S. Patel, C. Harmath, S. Bridges, J. Synnott, A. Sievers, Y.H. Yoon, E.J. Lee, M.C. Yang, R.F. Lewis, G.J. Harris, M. Lev, P.W. Schaefer, B.R. Buchbinder, G. Barest, K. Yamada, J. Ponzo, H.Y. Kwon, J. Gemmete, J. Farkas, A.L. Tievsky, R.B. Ziegler, M.R. Salhus, R. Weisskoff, Comparison of diameter and perimeter methods for tumor volume calculation. J. Clin. Oncol. 19(2), 551–557 (2001).  https://doi.org/10.1200/jco.2001.19.2.551 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Section of Specialized Endocrinology, Department of EndocrinologyOslo University Hospital RikshospitaletOsloNorway
  2. 2.Faculty of MedicineUniversity of OsloOsloNorway
  3. 3.Research Institute for Internal Medicine (IMF)OUS RikshospitaletOsloNorway
  4. 4.Department of RadiologyOslo University Hospital RikshospitaletOsloNorway
  5. 5.Oslo Centre for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical SciencesUniversity of OsloOsloNorway

Personalised recommendations